NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Xiaona; Qi, Wanxue – International Journal of Educational Technology in Higher Education, 2023
The temporal sequence of learning behavior is multidimensional and continuous in MOOCs. On the one hand, it supports personalized learning methods, achieves flexible time and space. On the other hand, it also makes MOOCs produce a large number of dropouts and incomplete learning behaviors. Dropout prediction and decision feedback have become an…
Descriptors: MOOCs, Dropouts, Prediction, Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Khalid Oqaidi; Sarah Aouhassi; Khalifa Mansouri – International Association for Development of the Information Society, 2022
The dropout of students is one of the major obstacles that ruin the improvement of higher education quality. To facilitate the study of students' dropout in Moroccan universities, this paper aims to establish a clustering approach model based on machine learning algorithms to determine Moroccan universities categories. Our objective in this…
Descriptors: Models, Prediction, Dropouts, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Denis Zhidkikh; Ville Heilala; Charlotte Van Petegem; Peter Dawyndt; Miitta Jarvinen; Sami Viitanen; Bram De Wever; Bart Mesuere; Vesa Lappalainen; Lauri Kettunen; Raija Hämäläinen – Journal of Learning Analytics, 2024
Predictive learning analytics has been widely explored in educational research to improve student retention and academic success in an introductory programming course in computer science (CS1). General-purpose and interpretable dropout predictions still pose a challenge. Our study aims to reproduce and extend the data analysis of a privacy-first…
Descriptors: Learning Analytics, Prediction, School Holding Power, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Mubarak, Ahmed A.; Cao, Han; Zhang, Weizhen – Interactive Learning Environments, 2022
Online learning has become more popular in higher education since it adds convenience and flexibility to students' schedule. But, it has faced difficulties in the retention of the continuity of students and ensure continual growth in course. Dropout is a concerning factor in online course continuity. Therefore, it has sparked great interest among…
Descriptors: Prediction, Dropouts, Interaction, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Yinuo; Pardos, Zachary A. – International Educational Data Mining Society, 2023
In studies that generate course recommendations based on similarity, the typical enrollment data used for model training consists only of one record per student-course pair. In this study, we explore and quantify the additional signal present in course transaction data, which includes a more granular account of student administrative interactions…
Descriptors: Semantics, Enrollment Trends, Learning Analytics, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Pei, Bo; Xing, Wanli – Journal of Educational Computing Research, 2022
This paper introduces a novel approach to identify at-risk students with a focus on output interpretability through analyzing learning activities at a finer granularity on a weekly basis. Specifically, this approach converts the predicted output from the former weeks into meaningful probabilities to infer the predictions in the current week for…
Descriptors: At Risk Students, Learning Analytics, Information Retrieval, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Munguia, Pablo; Brennan, Amelia – Journal of Learning Analytics, 2020
No course exists in isolation, so examining student progression through courses within a broader program context is an important step in integrating course-level and program-level analytics. Integration in this manner allows us to see the impact of course-level changes to the program, as well as identify points in the program structure where…
Descriptors: Learning Analytics, Courses, College Programs, Foreign Countries
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gardner, Josh; Yang, Yuming; Baker, Ryan S.; Brooks, Christopher – International Educational Data Mining Society, 2019
Replication of machine learning experiments can be a useful tool to evaluate how both "modeling" and "experimental design" contribute to experimental results; however, existing replication efforts focus almost entirely on modeling alone. In this work, we conduct a three-part replication case study of a state-of-the-art LSTM…
Descriptors: Online Courses, Large Group Instruction, Prediction, Models