Publication Date
| In 2026 | 0 |
| Since 2025 | 3 |
| Since 2022 (last 5 years) | 21 |
| Since 2017 (last 10 years) | 36 |
| Since 2007 (last 20 years) | 97 |
Descriptor
| Data Interpretation | 141 |
| Models | 141 |
| Data Analysis | 42 |
| Evaluation Methods | 23 |
| Data Collection | 22 |
| Research Methodology | 20 |
| Foreign Countries | 19 |
| Statistical Analysis | 18 |
| Higher Education | 16 |
| Case Studies | 11 |
| Decision Making | 11 |
| More ▼ | |
Source
Author
| Adam Sales | 2 |
| Charlotte Z. Mann | 2 |
| Jiaying Wang | 2 |
| Johann A. Gagnon-Bartsch | 2 |
| Kavale, Kenneth A. | 2 |
| Achilleas Mandrikas | 1 |
| Adler, Jill | 1 |
| Ahn, Woo-kyoung | 1 |
| Akyuz, Gozde | 1 |
| Alison K. Cohen | 1 |
| Allchin, Douglas | 1 |
| More ▼ | |
Publication Type
Education Level
Location
| Texas | 3 |
| Turkey | 3 |
| United States | 3 |
| Arizona | 2 |
| Australia | 2 |
| Belgium | 2 |
| Canada | 2 |
| Alaska | 1 |
| Brazil | 1 |
| Cyprus | 1 |
| Czech Republic | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Bayley Mental Development… | 1 |
| Bayley Scales of Infant… | 1 |
What Works Clearinghouse Rating
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Jordan P. Beck; Diane M. Miller – Journal of Chemical Education, 2022
A version of the classic rotationally resolved infrared (IR) spectrum of a diatomic molecule experiment has been developed using the POGIL framework to more fully engage students in the collection, modeling, analysis, and interpretation of the data. An analysis of the experimental protocol reveals that the POGIL approach actively engages students…
Descriptors: Learner Engagement, Chemistry, Science Instruction, Laboratory Experiments
Cintron, Dakota W.; Montrosse-Moorhead, Bianca – American Journal of Evaluation, 2022
Despite the rising popularity of big data, there is speculation that evaluators have been slow adopters of these new statistical approaches. Several possible reasons have been offered for why this is the case: ethical concerns, institutional capacity, and evaluator capacity and values. In this method note, we address one of these barriers and aim…
Descriptors: Evaluation Research, Evaluation Problems, Evaluation Methods, Models
Iannario, Maria; Tarantola, Claudia – Sociological Methods & Research, 2023
This contribution deals with effect measures for covariates in ordinal data models to address the interpretation of the results on the extreme categories of the scales, evaluate possible response styles, and motivate collapsing of extreme categories. It provides a simpler interpretation of the influence of the covariates on the probability of the…
Descriptors: Data Analysis, Data Interpretation, Probability, Models
Wayne Nirode – Mathematics Teacher: Learning and Teaching PK-12, 2025
This article details an exploratory data analysis project using the Common Online Data Analysis Platform (CODAP) based on the "Guidelines for Assessment and Instruction in Statistics Education" (GAISE) four-part statistical problem-solving model. The project goal was to answer what similarities and differences exist within the school…
Descriptors: Data Analysis, Problem Solving, Models, Common Core State Standards
Braun, Henry – International Journal of Educational Methodology, 2021
This article introduces the concept of the carrying capacity of data (CCD), defined as an integrated, evaluative judgment of the credibility of specific data-based inferences, informed by quantitative and qualitative analyses, leavened by experience. The sequential process of evaluating the CCD is represented schematically by a framework that can…
Descriptors: Data Use, Social Sciences, Data Analysis, Data Interpretation
Roy Levy; Daniel McNeish – Journal of Educational and Behavioral Statistics, 2025
Research in education and behavioral sciences often involves the use of latent variable models that are related to indicators, as well as related to covariates or outcomes. Such models are subject to interpretational confounding, which occurs when fitting the model with covariates or outcomes alters the results for the measurement model. This has…
Descriptors: Models, Statistical Analysis, Measurement, Data Interpretation
Duschl, Richard; Avraamidou, Lucy; Azevedo, Nathália Helena – Science & Education, 2021
Grounded within current reform recommendations and built upon Giere's views (1986, 1999) on model-based science, we propose an alternative approach to science education which we refer to as the "Evidence-Explanation (EE) Continuum." The approach addresses conceptual, epistemological, and social domains of knowledge, and places emphasis…
Descriptors: Science Education, Epistemology, Data, Observation
Wang, Karen D.; Cock, Jade Maï; Käser, Tanja; Bumbacher, Engin – British Journal of Educational Technology, 2023
Technology-based, open-ended learning environments (OELEs) can capture detailed information of students' interactions as they work through a task or solve a problem embedded in the environment. This information, in the form of log data, has the potential to provide important insights about the practices adopted by students for scientific inquiry…
Descriptors: Data Use, Educational Environment, Science Process Skills, Inquiry
Peter Ling – Educational Philosophy and Theory, 2025
This paper is a philosophical piece relating to an issue in education theory: what is the epistemological nature of the product of education research and what are the consequences for the reporting of findings and conclusions in particular, what form of contribution to knowledge and/or understanding can emerge from education research? Education…
Descriptors: Educational Research, Alignment (Education), Epistemology, Models
Achilleas Mandrikas; Constantina Stefanidou; Constantine Skordoulis – Journal of STEM Education: Innovations and Research, 2024
A STEM education program entitled "Come rain or shine" implemented in a primary rural school in southern Greece as part of the "Diffusion of STEM (DI-STEM)" project and the results of its implementation are presented in this paper. The educational program deepened in weather education and intended to develop eight scientific…
Descriptors: Foreign Countries, STEM Education, Elementary Education, Program Implementation
Meng-Ting Lo – ProQuest LLC, 2020
Multilevel modeling is commonly used with clustered data, and much emphasis has been placed specifically on the multilevel linear model (MLM). When modeling clustered ordinal data, a multilevel ordinal model with cumulative logit link assuming proportional odds (i.e., multilevel cumulative logit model) is typically used. Depending on the research…
Descriptors: Data Analysis, Models, Best Practices, Data Interpretation
Ferguson, Sarah L.; Moore, E. Whitney G.; Hull, Darrell M. – International Journal of Behavioral Development, 2020
The present guide provides a practical guide to conducting latent profile analysis (LPA) in the Mplus software system. This guide is intended for researchers familiar with some latent variable modeling but not LPA specifically. A general procedure for conducting LPA is provided in six steps: (a) data inspection, (b) iterative evaluation of models,…
Descriptors: Statistical Analysis, Computer Software, Data Analysis, Goodness of Fit
Charlotte Z. Mann; Jiaying Wang; Adam Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2024
The gold-standard for evaluating the effect of an educational intervention on student outcomes is running a randomized controlled trial (RCT). However, RCTs may often be small due to logistical considerations, and resulting treatment effect estimates may lack precision. Recent methods improve experimental precision by incorporating information…
Descriptors: Intervention, Outcomes of Education, Randomized Controlled Trials, Data Use
Charlotte Z. Mann; Jiaying Wang; Adam Sales; Johann A. Gagnon-Bartsch – International Educational Data Mining Society, 2024
The gold-standard for evaluating the effect of an educational intervention on student outcomes is running a randomized controlled trial (RCT). However, RCTs may often be small due to logistical considerations, and resulting treatment effect estimates may lack precision. Recent methods improve experimental precision by incorporating information…
Descriptors: Intervention, Outcomes of Education, Randomized Controlled Trials, Data Use

Peer reviewed
Direct link
