NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Aslan, Burak Galip; Öztürk, Özlem; Inceoglu, Mustafa Murat – Educational Sciences: Theory and Practice, 2014
Considering the increasing importance of adaptive approaches in CALL systems, this study implemented a machine learning based student modeling middleware with Bayesian networks. The profiling approach of the student modeling system is based on Felder and Silverman's Learning Styles Model and Felder and Soloman's Index of Learning Styles…
Descriptors: Foreign Countries, Undergraduate Students, Graduate Students, Cognitive Style
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kosek, Michal; Lison, Pierre – Research-publishing.net, 2014
We present an intelligent tutoring system that lets students of Chinese learn words and grammatical constructions. It relies on a Bayesian, linguistically motivated cognitive model that represents the learner's knowledge. This model is dynamically updated given observations about the learner's behaviour in the exercises, and employed at runtime to…
Descriptors: Intelligent Tutoring Systems, Grammar, Bayesian Statistics, Second Language Learning
Hershkovitz, Arnon; Baker, Ryan S. J. d.; Gobert, Janice; Wixon, Michael; Sao Pedro, Michael – Grantee Submission, 2013
In recent years, an increasing number of analyses in Learning Analytics and Educational Data Mining (EDM) have adopted a "Discovery with Models" approach, where an existing model is used as a key component in a new EDM/analytics analysis. This article presents a theoretical discussion on the emergence of discovery with models, its…
Descriptors: Learning Analytics, Models, Learning Processes, Case Studies
Park, Ok-choon; Tennyson, Robert D. – Contemporary Education Review, 1983
The theoretical rationales and procedures of five adaptive computer-based instruction models were reviewed: the mathematical model, the regression model, the Bayesian probabilistic model, the testing and branching model, and artificially intelligent instructional systems. Each model is assessed for contrast of methods and forms, identifiable…
Descriptors: Artificial Intelligence, Bayesian Statistics, Branching, Computer Assisted Instruction
Tennyson, Robert – 1978
Presented are variables and conditions for design of a computer-based adaptive instructional system. The design strategy uses Bayes' theory of conditional probability to determine an instructional sequence according to individual student characteristics and needs. The adaptive strategy uses prior estimates based on student pretask and on-task…
Descriptors: Aptitude Treatment Interaction, Bayesian Statistics, Computer Assisted Instruction, Computer Managed Instruction