Publication Date
In 2025 | 2 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 8 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 26 |
Descriptor
Classification | 29 |
Error Patterns | 29 |
Models | 29 |
Comparative Analysis | 6 |
Evaluation Methods | 6 |
Foreign Countries | 6 |
Prediction | 6 |
Semantics | 6 |
Computer Software | 5 |
Feedback (Response) | 5 |
Intelligent Tutoring Systems | 5 |
More ▼ |
Source
Author
Publication Type
Education Level
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Lauren A. Mason; Abigail Miller; Gregory Hughes; Holly A. Taylor – Cognitive Research: Principles and Implications, 2025
False alarming, or detecting an error when there is not one, is a pervasive problem across numerous industries. The present study investigated the role of elaboration, or additional information about non-error differences in complex visual displays, for mitigating false error responding. In Experiment 1, learners studied errors and non-error…
Descriptors: Error Correction, Error Patterns, Evaluation Methods, Visual Aids
Cai, Zhiqiang; Marquart, Cody; Shaffer, David W. – International Educational Data Mining Society, 2022
Regular expression (regex) coding has advantages for text analysis. Humans are often able to quickly construct intelligible coding rules with high precision. That is, researchers can identify words and word patterns that correctly classify examples of a particular concept. And, it is often easy to identify false positives and improve the regex…
Descriptors: Coding, Classification, Artificial Intelligence, Engineering Education
Kwaku Adu-Gyamfi; Kayla Chandler; Anthony Thompson – School Science and Mathematics, 2025
The challenge posed by algebra story problems creates a significant hurdle for many students, transcending both the mathematical content of the problem and the specific instructional background received. This study offers a distinctive contribution to the existing literature by focusing on the cognitive conditions essential for comprehension in…
Descriptors: Algebra, Mathematics Instruction, Barriers, Cognitive Processes
Guozhu Ding; Xiangyi Shi; Shan Li – Education and Information Technologies, 2024
In this study, we developed a classification system of programming errors based on the historical data of 680,540 programming records collected on the Online Judge platform. The classification system described six types of programming errors (i.e., syntax, logical, type, writing, misunderstanding, and runtime errors) and their connections with…
Descriptors: Programming, Computer Science Education, Classification, Graphs
Gorgun, Guher; Yildirim-Erbasli, Seyma N.; Epp, Carrie Demmans – International Educational Data Mining Society, 2022
The need to identify student cognitive engagement in online-learning settings has increased with our use of online learning approaches because engagement plays an important role in ensuring student success in these environments. Engaged students are more likely to complete online courses successfully, but this setting makes it more difficult for…
Descriptors: Online Courses, Group Discussion, Learner Engagement, Student Participation
Salem, Alexandra C.; Gale, Robert; Casilio, Marianne; Fleegle, Mikala; Fergadiotis, Gerasimos; Bedrick, Steven – Journal of Speech, Language, and Hearing Research, 2023
Purpose: ParAlg (Paraphasia Algorithms) is a software that automatically categorizes a person with aphasia's naming error (paraphasia) in relation to its intended target on a picture-naming test. These classifications (based on lexicality as well as semantic, phonological, and morphological similarity to the target) are important for…
Descriptors: Semantics, Computer Software, Aphasia, Classification
Young, Nicholas T.; Caballero, Marcos D. – Journal of Educational Data Mining, 2021
We encounter variables with little variation often in educational data mining (EDM) due to the demographics of higher education and the questions we ask. Yet, little work has examined how to analyze such data. Therefore, we conducted a simulation study using logistic regression, penalized regression, and random forest. We systematically varied the…
Descriptors: Prediction, Models, Learning Analytics, Mathematics
Vanhove, Jan – Second Language Research, 2020
Researchers commonly estimate the prevalence of nativelikeness among second-language learners by assessing how many of them perform similarly to a sample of native speakers on one or several linguistic tasks. Even when the native (L1) samples and second-language (L2) samples are comparable in terms of age, socio-economic status, educational…
Descriptors: Second Language Learning, Native Speakers, Labeling (of Persons), Classification
Zhang, Mengxue; Wang, Zichao; Baraniuk, Richard; Lan, Andrew – International Educational Data Mining Society, 2021
Feedback on student answers and even during intermediate steps in their solutions to open-ended questions is an important element in math education. Such feedback can help students correct their errors and ultimately lead to improved learning outcomes. Most existing approaches for automated student solution analysis and feedback require manually…
Descriptors: Mathematics Instruction, Teaching Methods, Intelligent Tutoring Systems, Error Patterns
Halitoglu, Vedat – Journal of Language and Linguistic Studies, 2020
Many people from Turkey emigrated to European countries as a result of the bilateral agreements signed between Turkey and related countries after the 1950s. The temporary travels to these countries left their place to permanent settlements, and the Turkish children living there were faced with the danger of alienation from their mother tongue and…
Descriptors: Error Patterns, Turkish, Native Language, Academic Achievement
Holden, Mark P.; Newcombe, Nora S.; Resnick, Ilyse; Shipley, Thomas F. – Cognitive Science, 2016
Memory for spatial location is typically biased, with errors trending toward the center of a surrounding region. According to the category adjustment model (CAM), this bias reflects the optimal, Bayesian combination of fine-grained and categorical representations of a location. However, there is disagreement about whether categories are malleable.…
Descriptors: Memory, Spatial Ability, Bias, Bayesian Statistics
Holden, Mark P.; Newcombe, Nora S.; Shipley, Thomas F. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2015
Memories for spatial locations often show systematic errors toward the central value of the surrounding region. The Category Adjustment (CA) model suggests that this bias is due to a Bayesian combination of categorical and metric information, which offers an optimal solution under conditions of uncertainty (Huttenlocher, Hedges, & Duncan,…
Descriptors: Spatial Ability, Memory, Models, Task Analysis
Liu, Ran; Koedinger, Kenneth R. – International Educational Data Mining Society, 2015
A growing body of research suggests that accounting for student specific variability in educational data can improve modeling accuracy and may have implications for individualizing instruction. The Additive Factors Model (AFM), a logistic regression model used to fit educational data and discover/refine skill models of learning, contains a…
Descriptors: Models, Regression (Statistics), Learning, Classification
Hauser, Carl; Thum, Yeow Meng; He, Wei; Ma, Lingling – Educational and Psychological Measurement, 2015
When conducting item reviews, analysts evaluate an array of statistical and graphical information to assess the fit of a field test (FT) item to an item response theory model. The process can be tedious, particularly when the number of human reviews (HR) to be completed is large. Furthermore, such a process leads to decisions that are susceptible…
Descriptors: Test Items, Item Response Theory, Research Methodology, Decision Making
Gropper, George L. – Educational Technology, 2015
Instructional design can be more effective if it is as fixedly dedicated to the accommodation of individual differences as it currently is to the accommodation of subject matters. That is the hypothesis. A menu of accommodation options is provided that is applicable at each of three stages of instructional development or administration: before,…
Descriptors: Instructional Design, Individual Differences, Student Needs, Remedial Instruction
Previous Page | Next Page ยป
Pages: 1 | 2