NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Policymakers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 32 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mahmoud Abdasalam; Ahmad Alzubi; Kolawole Iyiola – Education and Information Technologies, 2025
This study introduces an optimized ensemble deep neural network (Optimized Ensemble Deep-NN) to enhance the accuracy of predicting student grades. This model solves the problem of different and complicated student performance data by using deep neural networks, ensemble learning, and a number of optimization algorithms, such as Adam, SGD, and RMS…
Descriptors: Grades (Scholastic), Prediction, Accuracy, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
R. K. Kapila Vani; P. Jayashree – Education and Information Technologies, 2025
Emotions of learners are fundamental and significant in e-learning as they encourage learning. Machine learning models are presented in the literature to look at how emotions may affect e-learning results that are improved and optimized. Nevertheless, the models that have been suggested so far are appropriate for offline mode, whereby data for…
Descriptors: Electronic Learning, Psychological Patterns, Artificial Intelligence, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Senthil Kumaran, V.; Malar, B. – Interactive Learning Environments, 2023
Churn in e-learning refers to learners who gradually perform less and become lethargic and may potentially drop out from the course. Churn prediction is a highly sensitive and critical task in an e-learning system because inaccurate predictions might cause undesired consequences. A lot of approaches proposed in the literature analyzed and modeled…
Descriptors: Electronic Learning, Dropouts, Accuracy, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
David Arthur; Hua-Hua Chang – Journal of Educational and Behavioral Statistics, 2024
Cognitive diagnosis models (CDMs) are the assessment tools that provide valuable formative feedback about skill mastery at both the individual and population level. Recent work has explored the performance of CDMs with small sample sizes but has focused solely on the estimates of individual profiles. The current research focuses on obtaining…
Descriptors: Algorithms, Models, Computation, Cognitive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Laura E. Matzen; Zoe N. Gastelum; Breannan C. Howell; Kristin M. Divis; Mallory C. Stites – Cognitive Research: Principles and Implications, 2024
This study addressed the cognitive impacts of providing correct and incorrect machine learning (ML) outputs in support of an object detection task. The study consisted of five experiments that manipulated the accuracy and importance of mock ML outputs. In each of the experiments, participants were given the T and L task with T-shaped targets and…
Descriptors: Artificial Intelligence, Error Patterns, Decision Making, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kim, Yunsung; Sreechan; Piech, Chris; Thille, Candace – International Educational Data Mining Society, 2023
Dynamic Item Response Models extend the standard Item Response Theory (IRT) to capture temporal dynamics in learner ability. While these models have the potential to allow instructional systems to actively monitor the evolution of learner proficiency in real time, existing dynamic item response models rely on expensive inference algorithms that…
Descriptors: Item Response Theory, Accuracy, Inferences, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
A. M. Sadek; Fahad Al-Muhlaki – Measurement: Interdisciplinary Research and Perspectives, 2024
In this study, the accuracy of the artificial neural network (ANN) was assessed considering the uncertainties associated with the randomness of the data and the lack of learning. The Monte-Carlo algorithm was applied to simulate the randomness of the input variables and evaluate the output distribution. It has been shown that under certain…
Descriptors: Monte Carlo Methods, Accuracy, Artificial Intelligence, Guidelines
Peer reviewed Peer reviewed
Direct linkDirect link
Harikesh Singh; Li-Minn Ang; Dipak Paudyal; Mauricio Acuna; Prashant Kumar Srivastava; Sanjeev Kumar Srivastava – Technology, Knowledge and Learning, 2025
Wildfires pose significant environmental threats in Australia, impacting ecosystems, human lives, and property. This review article provides a comprehensive analysis of various empirical and dynamic wildfire simulators alongside machine learning (ML) techniques employed for wildfire prediction in Australia. The study examines the effectiveness of…
Descriptors: Artificial Intelligence, Computer Software, Computer Simulation, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Raymond A. Opoku; Bo Pei; Wanli Xing – Journal of Learning Analytics, 2025
While high-accuracy machine learning (ML) models for predicting student learning performance have been widely explored, their deployment in real educational settings can lead to unintended harm if the predictions are biased. This study systematically examines the trade-offs between prediction accuracy and fairness in ML models trained on the…
Descriptors: Prediction, Accuracy, Electronic Learning, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Melina Verger; Chunyang Fan; Sébastien Lallé; François Bouchet; Vanda Luengo – Journal of Educational Data Mining, 2024
Predictive student models are increasingly used in learning environments due to their ability to enhance educational outcomes and support stakeholders in making informed decisions. However, predictive models can be biased and produce unfair outcomes, leading to potential discrimination against certain individuals and harmful long-term…
Descriptors: Algorithms, Prediction, Bias, Classification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shabnam Ara S. J.; Tanuja Ramachandriah; Manjula S. Haladappa – Online Learning, 2025
Predicting learner performance with precision is critical within educational systems, offering a basis for tailored interventions and instruction. The advent of big data analytics presents an opportunity to employ Machine Learning (ML) techniques to this end. Real-world data availability is often hampered by privacy concerns, prompting a shift…
Descriptors: Learning Analytics, Privacy, Artificial Intelligence, Regression (Statistics)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Okan Yetisensoy – Journal of Pedagogical Research, 2025
Generative artificial intelligence (GenAI) models have led to many positive changes in educational settings; however, the validity of the content they produce remains a significant topic of academic discussion. This research aims to determine the validity of content produced by text-to-image models within the context of social studies education.…
Descriptors: Artificial Intelligence, Technology Uses in Education, Validity, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Cingillioglu, Ilker – International Journal of Information and Learning Technology, 2023
Purpose: With the advent of ChatGPT, a sophisticated generative artificial intelligence (AI) tool, maintaining academic integrity in all educational settings has recently become a challenge for educators. This paper discusses a method and necessary strategies to confront this challenge. Design/methodology/approach: In this study, a language model…
Descriptors: Artificial Intelligence, Essays, Integrity, Cheating
Previous Page | Next Page »
Pages: 1  |  2  |  3