Publication Date
In 2025 | 7 |
Since 2024 | 16 |
Since 2021 (last 5 years) | 36 |
Since 2016 (last 10 years) | 85 |
Since 2006 (last 20 years) | 267 |
Descriptor
Academic Achievement | 387 |
Models | 387 |
Data Analysis | 180 |
Elementary Secondary Education | 104 |
Higher Education | 103 |
Data | 96 |
Outcomes of Education | 94 |
Accountability | 86 |
Data Collection | 86 |
Educational Change | 86 |
Teacher Effectiveness | 81 |
More ▼ |
Source
Author
Dawson, Shane | 4 |
Engelhard, George, Jr. | 3 |
Gaševic, Dragan | 3 |
Lockwood, J. R. | 3 |
Alexander, Karl L. | 2 |
Anand Nayyar | 2 |
Chiang, Hanley | 2 |
Eros, Dawn | 2 |
Gill, Brian | 2 |
Harris, Zelema | 2 |
Horst, Donald P. | 2 |
More ▼ |
Publication Type
Education Level
Location
Florida | 13 |
Australia | 12 |
Georgia | 10 |
North Carolina | 10 |
Hawaii | 8 |
New York | 8 |
Ohio | 8 |
California | 7 |
Massachusetts | 7 |
Netherlands | 7 |
Rhode Island | 7 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Does not meet standards | 1 |
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Majdi Beseiso – TechTrends: Linking Research and Practice to Improve Learning, 2025
Predicting students' success is crucial in educational settings to improve academic performance and prevent dropouts. This study aimed to improve student performance prediction by combining advanced machine learning (ML) approaches. Convolutional Neural Networks (CNNs) and attention mechanisms were used for extracting relevant features from…
Descriptors: Prediction, Success, Academic Achievement, Artificial Intelligence
Narjes Rohani; Behnam Rohani; Areti Manataki – Journal of Educational Data Mining, 2024
The prediction of student performance and the analysis of students' learning behaviour play an important role in enhancing online courses. By analysing a massive amount of clickstream data that captures student behaviour, educators can gain valuable insights into the factors that influence students' academic outcomes and identify areas of…
Descriptors: Mathematics Education, Models, Prediction, Knowledge Level
Yanzheng Li; Zorka Karanxha – Educational Management Administration & Leadership, 2024
This systematic literature review critically evaluates 14 empirical studies published over a 14 years span (2006-2019) to answer questions about the models and the effects of transformational school leadership on student academic achievement. The analysis of the related literature utilized vote counting and narrative synthesis to delineate the…
Descriptors: Transformational Leadership, Instructional Leadership, Academic Achievement, Models
Umer, Rahila; Susnjak, Teo; Mathrani, Anuradha; Suriadi, Lim – Interactive Learning Environments, 2023
Predictive models on students' academic performance can be built by using historical data for modelling students' learning behaviour. Such models can be employed in educational settings to determine how new students will perform and in predicting whether these students should be classed as at-risk of failing a course. Stakeholders can use…
Descriptors: Prediction, Student Behavior, Models, Academic Achievement
Safa Ridha Albo Abdullah; Ahmed Al-Azawei – International Review of Research in Open and Distributed Learning, 2025
This systematic review sheds light on the role of ontologies in predicting achievement among online learners, in order to promote their academic success. In particular, it looks at the available literature on predicting online learners' performance through ontological machine-learning techniques and, using a systematic approach, identifies the…
Descriptors: Electronic Learning, Academic Achievement, Grade Prediction, Data Analysis
Venera Nakhipova; Yerzhan Kerimbekov; Zhanat Umarova; Halil ibrahim Bulbul; Laura Suleimenova; Elvira Adylbekova – International Journal of Information and Communication Technology Education, 2024
This article introduces a novel method that integrates collaborative filtering into the naive Bayes model to enhance predicting student academic performance. The combined approach leverages collaborative user behavior analysis and probabilistic modeling, showing promising results in improved prediction precision. Collaborative Filtering explores…
Descriptors: Academic Achievement, Prediction, Cooperation, Behavior
Achmad Bisri; Supardi; Yayu Heryatun; Hunainah; Annisa Navira – Journal of Education and Learning (EduLearn), 2025
In the educational landscape, educational data mining has emerged as an indispensable tool for institutions seeking to deliver exceptional and high-quality education. However, education data revealed suboptimal academic performance among a significant portion of the student population, which consequently resulted in delayed graduation. This…
Descriptors: Data Analysis, Models, Academic Achievement, Evaluation Methods
Khan, Anupam; Ghosh, Soumya K. – Education and Information Technologies, 2021
Student performance modelling is one of the challenging and popular research topics in educational data mining (EDM). Multiple factors influence the performance in non-linear ways; thus making this field more attractive to the researchers. The widespread availability of educational datasets further catalyse this interestingness, especially in…
Descriptors: Academic Achievement, Prediction, Data Analysis, Meta Analysis
Varun Mandalapu – ProQuest LLC, 2021
Educational data mining focuses on exploring increasingly large-scale data from educational settings, such as Learning Management Systems (LMS), and developing computational methods to understand students' behaviors and learning settings better. There has been a multitude of research dedicated to studying the student learning process, leading to…
Descriptors: Models, Student Behavior, Learning Management Systems, Data Use
Hussain, Sadiq; Gaftandzhieva, Silvia; Maniruzzaman, Md.; Doneva, Rositsa; Muhsin, Zahraa Fadhil – Education and Information Technologies, 2021
Educational data mining helps the educational institutions to perform effectively and efficiently by exploiting the data related to all its stakeholders. It can help the at-risk students, develop recommendation systems and alert the students at different levels. It is beneficial to the students, educators and authorities as a whole. Deep learning…
Descriptors: Regression (Statistics), Academic Achievement, Learning Analytics, Models
Hao Zhou; Wenge Rong; Jianfei Zhang; Qing Sun; Yuanxin Ouyang; Zhang Xiong – IEEE Transactions on Learning Technologies, 2025
Knowledge tracing (KT) aims to predict students' future performances based on their former exercises and additional information in educational settings. KT has received significant attention since it facilitates personalized experiences in educational situations. Simultaneously, the autoregressive (AR) modeling on the sequence of former exercises…
Descriptors: Learning Experience, Academic Achievement, Data, Artificial Intelligence
Selma Tosun; Dilara Bakan Kalaycioglu – Journal of Educational Technology and Online Learning, 2024
Predicting and improving the academic achievement of university students is a multifactorial problem. Considering the low success rates and high dropout rates, particularly in open education programs characterized by mass enrollment, academic success is an important research area with its causes and consequences. This study aimed to solve a…
Descriptors: Academic Achievement, Open Education, Distance Education, Foreign Countries
Kelli A. Bird; Benjamin L. Castleman; Yifeng Song – Journal of Policy Analysis and Management, 2025
Predictive analytics are increasingly pervasive in higher education. However, algorithmic bias has the potential to reinforce racial inequities in postsecondary success. We provide a comprehensive and translational investigation of algorithmic bias in two separate prediction models--one predicting course completion, the second predicting degree…
Descriptors: Algorithms, Technology Uses in Education, Bias, Racism
Nathan Jones; Lindsey Kaler; Jessica Markham; Josefina Senese; Marcus A. Winters – Educational Researcher, 2025
Students with and without disabilities may be educated across various service delivery models (SDMs): general education, cotaught, pull-out, and self-contained. Still, evidence for their relative effectiveness at scale remains limited. Using longitudinal administrative data from Indiana, we measured the effect of different SDMs on test scores,…
Descriptors: Students with Disabilities, Teaching Methods, Students, Instructional Effectiveness