NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)0
Since 2006 (last 20 years)35
Source
Multivariate Behavioral…37
Audience
Researchers1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 37 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gignac, Gilles E.; Watkins, Marley W. – Multivariate Behavioral Research, 2013
Previous confirmatory factor analytic research that has examined the factor structure of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) has endorsed either higher order models or oblique factor models that tend to amalgamate both general factor and index factor sources of systematic variance. An alternative model that has not yet…
Descriptors: Intelligence Tests, Test Reliability, Factor Structure, Models
Peer reviewed Peer reviewed
Direct linkDirect link
de Leeuw, Christiaan; Klugkist, Irene – Multivariate Behavioral Research, 2012
In most research, linear regression analyses are performed without taking into account published results (i.e., reported summary statistics) of similar previous studies. Although the prior density in Bayesian linear regression could accommodate such prior knowledge, formal models for doing so are absent from the literature. The goal of this…
Descriptors: Data, Multiple Regression Analysis, Bayesian Statistics, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel – Multivariate Behavioral Research, 2012
In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…
Descriptors: Bayesian Statistics, Factor Analysis, Models, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Song, Hairong; Ferrer, Emilio – Multivariate Behavioral Research, 2012
Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…
Descriptors: Bayesian Statistics, Computation, Factor Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Varriale, Roberta; Vermunt, Jeroen K. – Multivariate Behavioral Research, 2012
Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs)…
Descriptors: Factor Analysis, Models, Statistical Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Tong, Xin; Zhang, Zhiyong – Multivariate Behavioral Research, 2012
Growth curve models with different types of distributions of random effects and of intraindividual measurement errors for robust analysis are compared. After demonstrating the influence of distribution specification on parameter estimation, 3 methods for diagnosing the distributions for both random effects and intraindividual measurement errors…
Descriptors: Models, Robustness (Statistics), Statistical Analysis, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Lam, Kar Yin; Koning, Alex J.; Franses, Philip Hans – Multivariate Behavioral Research, 2011
We consider the estimation of probabilistic ranking models in the context of conjoint experiments. By using approximate rather than exact ranking probabilities, we avoided the computation of high-dimensional integrals. We extended the approximation technique proposed by Henery (1981) in the context of the Thurstone-Mosteller-Daniels model to any…
Descriptors: Probability, Evaluation Research, Computation, Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Oud, Johan H. L.; Folmer, Henk – Multivariate Behavioral Research, 2011
This article addresses modeling oscillation in continuous time. It criticizes Steele and Ferrer's article "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011), particularly the approximate estimation procedure applied. This procedure is the latent version of the local linear approximation procedure…
Descriptors: Structural Equation Models, Computation, Calculus, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo – Multivariate Behavioral Research, 2012
Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…
Descriptors: Sample Size, Simulation, Form Classes (Languages), Diseases
Peer reviewed Peer reviewed
Direct linkDirect link
Reise, Steven P. – Multivariate Behavioral Research, 2012
Bifactor latent structures were introduced over 70 years ago, but only recently has bifactor modeling been rediscovered as an effective approach to modeling "construct-relevant" multidimensionality in a set of ordered categorical item responses. I begin by describing the Schmid-Leiman bifactor procedure (Schmid & Leiman, 1957) and highlight its…
Descriptors: Models, Factor Structure, Factor Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Sterba, Sonya K.; MacCallum, Robert C. – Multivariate Behavioral Research, 2010
Different random or purposive allocations of items to parcels within a single sample are thought not to alter structural parameter estimates as long as items are unidimensional and congeneric. If, additionally, numbers of items per parcel and parcels per factor are held fixed across allocations, different allocations of items to parcels within a…
Descriptors: Sampling, Computation, Statistical Analysis, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Zhenqiu Laura; Zhang, Zhiyong; Lubke, Gitta – Multivariate Behavioral Research, 2011
"Growth mixture models" (GMMs) with nonignorable missing data have drawn increasing attention in research communities but have not been fully studied. The goal of this article is to propose and to evaluate a Bayesian method to estimate the GMMs with latent class dependent missing data. An extended GMM is first presented in which class…
Descriptors: Bayesian Statistics, Statistical Inference, Computation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Thoemmes, Felix J.; West, Stephen G. – Multivariate Behavioral Research, 2011
In this article we propose several modeling choices to extend propensity score analysis to clustered data. We describe different possible model specifications for estimation of the propensity score: single-level model, fixed effects model, and two random effects models. We also consider both conditioning within clusters and conditioning across…
Descriptors: Probability, Scores, Statistical Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
This article presents our response to Oud and Folmer's "Modeling Oscillation, Approximately or Exactly?" (2011), which criticizes aspects of our article, "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011). In this response, we present a conceptual explanation of the derivative-based estimation…
Descriptors: Calculus, Responses, Simulation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Deboeck, Pascal R. – Multivariate Behavioral Research, 2010
The fitting of dynamical systems to psychological data offers the promise of addressing new and innovative questions about how people change over time. One method of fitting dynamical systems is to estimate the derivatives of a time series and then examine the relationships between derivatives using a differential equation model. One common…
Descriptors: Computation, Calculus, Statistical Analysis, Statistical Bias
Previous Page | Next Page ยป
Pages: 1  |  2  |  3