Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 5 |
| Since 2007 (last 20 years) | 9 |
Descriptor
Source
| International Educational… | 9 |
Author
| Barnes, Tiffany | 2 |
| Chi, Min | 2 |
| Mao, Ye | 2 |
| Price, Thomas W. | 2 |
| Adish Singla | 1 |
| Bahar Radmehr | 1 |
| Barnes, Tiffany, Ed. | 1 |
| Boyer, Kristy Elizabeth | 1 |
| Chi, Min, Ed. | 1 |
| Ehara, Yo | 1 |
| Ezen-Can, Aysu | 1 |
| More ▼ | |
Publication Type
| Reports - Research | 7 |
| Speeches/Meeting Papers | 7 |
| Collected Works - Proceedings | 1 |
| Reports - Descriptive | 1 |
Education Level
| Higher Education | 3 |
| Postsecondary Education | 3 |
| Junior High Schools | 2 |
| Middle Schools | 2 |
| Secondary Education | 2 |
| High Schools | 1 |
Audience
Location
| Afghanistan | 1 |
| Illinois (Chicago) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Test of English for… | 1 |
What Works Clearinghouse Rating
Bahar Radmehr; Adish Singla; Tanja Käser – International Educational Data Mining Society, 2024
There has been a growing interest in developing learner models to enhance learning and teaching experiences in educational environments. However, existing works have primarily focused on structured environments relying on meticulously crafted representations of tasks, thereby limiting the agent's ability to generalize skills across tasks. In this…
Descriptors: Reinforcement, Artificial Intelligence, Educational Environment, Natural Language Processing
The AI Teacher Test: Measuring the Pedagogical Ability of Blender and GPT-3 in Educational Dialogues
Tack, Anaïs; Piech, Chris – International Educational Data Mining Society, 2022
How can we test whether state-of-the-art generative models, such as Blender and GPT-3, are good AI teachers, capable of replying to a student in an educational dialogue? Designing an AI teacher test is challenging: although evaluation methods are much-needed, there is no off-the-shelf solution to measuring pedagogical ability. This paper reports…
Descriptors: Artificial Intelligence, Dialogs (Language), Bayesian Statistics, Decision Making
Ehara, Yo – International Educational Data Mining Society, 2022
Language learners are underserved if there are unlearned meanings of a word that they think they have already learned. For example, "circle" as a noun is well known, whereas its use as a verb is not. For artificial-intelligence-based support systems for learning vocabulary, assessing each learner's knowledge of such atypical but common…
Descriptors: Language Tests, Vocabulary Development, Second Language Learning, Second Language Instruction
Mao, Ye; Shi, Yang; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2021
As students learn how to program, both their programming code and their understanding of it evolves over time. In this work, we present a general data-driven approach, named "Temporal-ASTNN" for modeling student learning progression in open-ended programming domains. Temporal-ASTNN combines a novel neural network model based on abstract…
Descriptors: Programming, Computer Science Education, Learning Processes, Learning Analytics
Mao, Ye; Zhi, Rui; Khoshnevisan, Farzaneh; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be effective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this…
Descriptors: Difficulty Level, Learning Activities, Prediction, Programming
Koedinger, Kenneth R.; McLaughlin, Elizabeth A. – International Educational Data Mining Society, 2016
Many educational data mining studies have explored methods for discovering cognitive models and have emphasized improving prediction accuracy. Too few studies have "closed the loop" by applying discovered models toward improving instruction and testing whether proposed improvements achieve higher student outcomes. We claim that such…
Descriptors: Educational Research, Data Collection, Task Analysis, Cognitive Processes
Rihák, Jirí – International Educational Data Mining Society, 2015
In this work we introduce the system for adaptive practice of foundations of mathematics. Adaptivity of the system is primarily provided by selection of suitable tasks, which uses information from a domain model and a student model. The domain model does not use prerequisites but works with splitting skills to more concrete sub-skills. The student…
Descriptors: Mathematics Achievement, Mathematics Skills, Models, Reaction Time
Ezen-Can, Aysu; Boyer, Kristy Elizabeth – International Educational Data Mining Society, 2015
The tremendous effectiveness of intelligent tutoring systems is due in large part to their interactivity. However, when learners are free to choose the extent to which they interact with a tutoring system, not all learners do so actively. This paper examines a study with a natural language tutorial dialogue system for computer science, in which…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Science Education, Problem Solving
Barnes, Tiffany, Ed.; Chi, Min, Ed.; Feng, Mingyu, Ed. – International Educational Data Mining Society, 2016
The 9th International Conference on Educational Data Mining (EDM 2016) is held under the auspices of the International Educational Data Mining Society at the Sheraton Raleigh Hotel, in downtown Raleigh, North Carolina, in the USA. The conference, held June 29-July 2, 2016, follows the eight previous editions (Madrid 2015, London 2014, Memphis…
Descriptors: Data Analysis, Evidence Based Practice, Inquiry, Science Instruction

Peer reviewed
