Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 4 |
| Since 2017 (last 10 years) | 8 |
| Since 2007 (last 20 years) | 20 |
Descriptor
| Models | 22 |
| Sample Size | 22 |
| Computation | 8 |
| Comparative Analysis | 5 |
| Factor Analysis | 5 |
| Simulation | 5 |
| Statistical Analysis | 5 |
| Computer Software | 3 |
| Error of Measurement | 3 |
| Evaluation Methods | 3 |
| Item Response Theory | 3 |
| More ▼ | |
Source
Author
| Fiedler, Klaus | 2 |
| Kareev, Yaakov | 2 |
| Amemiya, Yasuo | 1 |
| Avetisyan, Marianna | 1 |
| Berger, Moritz | 1 |
| Blankertz, Laura | 1 |
| Calvocoressi, Lisa | 1 |
| Coffman, Donna L. | 1 |
| Coxe, Stefany | 1 |
| Cress, Ulrike | 1 |
| DiStefano, Christine | 1 |
| More ▼ | |
Publication Type
| Reports - Descriptive | 22 |
| Journal Articles | 21 |
| Opinion Papers | 1 |
Education Level
| Higher Education | 2 |
| Adult Education | 1 |
| Postsecondary Education | 1 |
| Two Year Colleges | 1 |
Audience
| Researchers | 1 |
Location
| Texas | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Armed Services Vocational… | 1 |
| Hopkins Symptom Checklist | 1 |
What Works Clearinghouse Rating
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Sideridis, Georgios D.; Jaffari, Fathima – Measurement and Evaluation in Counseling and Development, 2022
The utility of the maximum likelihood F-test was demonstrated as an alternative to the omnibus Chi-square test when evaluating model fit in confirmatory factor analysis with small samples, as it has been well documented that the likelihood ratio test (T[subscript ML]) with small samples is not Chi-square distributed.
Descriptors: Maximum Likelihood Statistics, Factor Analysis, Alternative Assessment, Sample Size
Raykov, Tenko; DiStefano, Christine; Calvocoressi, Lisa; Volker, Martin – Educational and Psychological Measurement, 2022
A class of effect size indices are discussed that evaluate the degree to which two nested confirmatory factor analysis models differ from each other in terms of fit to a set of observed variables. These descriptive effect measures can be used to quantify the impact of parameter restrictions imposed in an initially considered model and are free…
Descriptors: Effect Size, Models, Measurement Techniques, Factor Analysis
Zhao, Xin; Coxe, Stefany; Sibley, Margaret H.; Zulauf-McCurdy, Courtney; Pettit, Jeremy W. – Prevention Science, 2023
There has been increasing interest in applying integrative data analysis (IDA) to analyze data across multiple studies to increase sample size and statistical power. Measures of a construct are frequently not consistent across studies. This article provides a tutorial on the complex decisions that occur when conducting harmonization of measures…
Descriptors: Data Analysis, Sample Size, Decision Making, Test Items
Zhang, Zhiyong; Liu, Haiyan – Grantee Submission, 2018
Latent change score models (LCSMs) proposed by McArdle (McArdle, 2000, 2009; McArdle & Nesselroade, 1994) offer a powerful tool for longitudinal data analysis. They are becoming increasingly popular in social and behavioral research (e.g., Gerstorf et al., 2007; Ghisletta & Lindenberger, 2005; King et al., 2006; Raz et al., 2008). Although…
Descriptors: Sample Size, Monte Carlo Methods, Data Analysis, Models
Wu, Wei; Jia, Fan; Kinai, Richard; Little, Todd D. – International Journal of Behavioral Development, 2017
Spline growth modelling is a popular tool to model change processes with distinct phases and change points in longitudinal studies. Focusing on linear spline growth models with two phases and a fixed change point (the transition point from one phase to the other), we detail how to find optimal data collection designs that maximize the efficiency…
Descriptors: Longitudinal Studies, Data Collection, Models, Change
Fugard, Andrew J. B.; Potts, Henry W. W. – International Journal of Social Research Methodology, 2015
Thematic analysis is frequently used to analyse qualitative data in psychology, healthcare, social research and beyond. An important stage in planning a study is determining how large a sample size may be required, however current guidelines for thematic analysis are varied, ranging from around 2 to over 400 and it is unclear how to choose a value…
Descriptors: Sample Size, Research Methodology, Qualitative Research, Computation
Willse, John T. – Measurement and Evaluation in Counseling and Development, 2017
This article provides a brief introduction to the Rasch model. Motivation for using Rasch analyses is provided. Important Rasch model concepts and key aspects of result interpretation are introduced, with major points reinforced using a simulation demonstration. Concrete guidelines are provided regarding sample size and the evaluation of items.
Descriptors: Item Response Theory, Test Results, Test Interpretation, Simulation
Lewis, Todd F. – Measurement and Evaluation in Counseling and Development, 2017
American Educational Research Association (AERA) standards stipulate that researchers show evidence of the internal structure of instruments. Confirmatory factor analysis (CFA) is one structural equation modeling procedure designed to assess construct validity of assessments that has broad applicability for counselors interested in instrument…
Descriptors: Educational Research, Factor Analysis, Structural Equation Models, Construct Validity
Tutz, Gerhard; Berger, Moritz – Journal of Educational and Behavioral Statistics, 2016
Heterogeneity in response styles can affect the conclusions drawn from rating scale data. In particular, biased estimates can be expected if one ignores a tendency to middle categories or to extreme categories. An adjacent categories model is proposed that simultaneously models the content-related effects and the heterogeneity in response styles.…
Descriptors: Response Style (Tests), Rating Scales, Data Interpretation, Statistical Bias
Fiedler, Klaus; Kareev, Yaakov – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2011
On the basis of earlier findings, we (Fiedler & Kareev, 2006) presented a statistical decision model that explains the conditions under which small samples of information about choice alternatives inform more correct choices than large samples. Such a small-sample advantage (SSA) is predicted for choices, not estimations. It is contingent on high…
Descriptors: Sample Size, Information Theory, Prediction, Selection
Avetisyan, Marianna; Fox, Jean-Paul – Psicologica: International Journal of Methodology and Experimental Psychology, 2012
In survey sampling the randomized response (RR) technique can be used to obtain truthful answers to sensitive questions. Although the individual answers are masked due to the RR technique, individual (sensitive) response rates can be estimated when observing multivariate response data. The beta-binomial model for binary RR data will be generalized…
Descriptors: Computation, Sample Size, Responses, Multivariate Analysis
Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo – Multivariate Behavioral Research, 2012
Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…
Descriptors: Sample Size, Simulation, Form Classes (Languages), Diseases
Coffman, Donna L. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Mediation is usually assessed by a regression-based or structural equation modeling (SEM) approach that we refer to as the classical approach. This approach relies on the assumption that there are no confounders that influence both the mediator, "M", and the outcome, "Y". This assumption holds if individuals are randomly…
Descriptors: Structural Equation Models, Simulation, Regression (Statistics), Probability
Levy, Roy – Applied Psychological Measurement, 2010
SEMModComp, a software package for conducting likelihood ratio tests for mean and covariance structure modeling is described. The package is written in R and freely available for download or on request.
Descriptors: Structural Equation Models, Tests, Computer Software, Models
Previous Page | Next Page ยป
Pages: 1 | 2
Peer reviewed
Direct link
