Publication Date
In 2025 | 1 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 15 |
Since 2016 (last 10 years) | 18 |
Since 2006 (last 20 years) | 20 |
Descriptor
Learning Analytics | 20 |
Models | 20 |
Middle School Students | 10 |
Prediction | 9 |
Learning Processes | 8 |
Mathematics Instruction | 6 |
Scores | 6 |
Comparative Analysis | 5 |
Grade 8 | 5 |
High School Students | 5 |
Mathematics Tests | 5 |
More ▼ |
Source
Author
Baker, Ryan S. | 4 |
Amisha Jindal | 3 |
Ashish Gurung | 3 |
Erin Ottmar | 3 |
Ji-Eun Lee | 3 |
Reilly Norum | 3 |
Sanika Nitin Patki | 3 |
Andres, Juliana Ma. Alexandra… | 2 |
Brooks, Jamiella | 2 |
Gobert, Janice | 2 |
Hiroaki Ogata | 2 |
More ▼ |
Publication Type
Reports - Research | 19 |
Journal Articles | 13 |
Speeches/Meeting Papers | 5 |
Information Analyses | 1 |
Education Level
Audience
Location
Japan | 2 |
Massachusetts | 2 |
Texas | 1 |
Thailand | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Motivated Strategies for… | 1 |
National Assessment of… | 1 |
Patterns of Adaptive Learning… | 1 |
What Works Clearinghouse Rating
Chia-Yu Hsu; Izumi Horikoshi; Rwitajit Majumdar; Hiroaki Ogata – Educational Technology & Society, 2024
This study focuses on the problem that the process of building learning habits has not been clearly described. Therefore, we aim to extract the stages of learning habits from log data. We propose a data model to extract stages of learning habits based on the transtheoretical model and apply the model to the learning logs of self-directed extensive…
Descriptors: Habit Formation, Behavior Change, Learning Analytics, Data Interpretation
Nuankaew, Pratya; Nuankaew, Wongpanya Sararat – European Journal of Educational Research, 2022
Modern technology is necessary and important for improving the quality of education. While machine learning algorithms to support students remain limited. Thus, it is necessary to inspire educational scholars and educational technologists. This research therefore has three main targets: to educate the holistic context of rural education…
Descriptors: Grade Prediction, Academic Achievement, High School Students, Rural Schools
Hai Li; Wanli Xing; Chenglu Li; Wangda Zhu; Simon Woodhead – Journal of Learning Analytics, 2025
Knowledge tracing (KT) is a method to evaluate a student's knowledge state (KS) based on their historical problem-solving records by predicting the next answer's binary correctness. Although widely applied to closed-ended questions, it lacks a detailed option tracing (OT) method for assessing multiple-choice questions (MCQs). This paper introduces…
Descriptors: Mathematics Tests, Multiple Choice Tests, Computer Assisted Testing, Problem Solving
Christhilf, Katerina; Newton, Natalie; Butterfuss, Reese; McCarthy, Kathryn S.; Allen, Laura K.; Magliano, Joseph P.; McNamara, Danielle S. – International Educational Data Mining Society, 2022
Prompting students to generate constructed responses as they read provides a window into the processes and strategies that they use to make sense of complex text. In this study, Markov models examined the extent to which: (1) patterns of strategies; and (2) strategy combinations could be used to inform computational models of students' text…
Descriptors: Markov Processes, Reading Strategies, Reading Comprehension, Models
Emily K. Toutkoushian; Kihyun Ryoo – Measurement: Interdisciplinary Research and Perspectives, 2024
The Next Generation Science Standards (NGSS) delineate three interrelated dimensions that describe what students should know and how they should engage in science learning. These present significant challenges for assessment because traditional assessments may not be able to capture the ways in which students engage with content. Science…
Descriptors: Middle School Students, Academic Standards, Science Education, Learner Engagement
Rwitajit Majumdar; Huiyong Li; Yuanyuan Yang; Hiroaki Ogata – Educational Technology & Society, 2024
Self-direction skill (SDS) is an essential 21st-century skill that can help learners be independent and organized in their quest for knowledge acquisition. While some studies considered learners from higher education levels as the target audience, providing opportunities to start the SDS practice by K12 learners is still rare. Further, practicing…
Descriptors: 21st Century Skills, Skill Development, Electronic Learning, Physical Activity Level
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Zhang, Jiayi; Andres, Juliana Ma. Alexandra L.; Hutt, Stephen; Baker, Ryan S.; Ocumpaugh, Jaclyn; Mills, Caitlin; Brooks, Jamiella; Sethuraman, Sheela; Young, Tyron – International Educational Data Mining Society, 2022
Self-regulated learning (SRL) is a critical component of mathematics problem solving. Students skilled in SRL are more likely to effectively set goals, search for information, and direct their attention and cognitive process so that they align their efforts with their objectives. An influential framework for SRL, the SMART model, proposes that…
Descriptors: Mathematics Instruction, Teaching Methods, Problem Solving, Metacognition
Picones, Gio; PaaBen, Benjamin; Koprinska, Irena; Yacef, Kalina – International Educational Data Mining Society, 2022
In this paper, we propose a novel approach to combine domain modelling and student modelling techniques in a single, automated pipeline which does not require expert knowledge and can be used to predict future student performance. Domain modelling techniques map questions to concepts and student modelling techniques generate a mastery score for a…
Descriptors: Prediction, Academic Achievement, Learning Analytics, Concept Mapping
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Levin, Nathan A. – Journal of Educational Data Mining, 2021
The Big Data for Education Spoke of the NSF Northeast Big Data Innovation Hub and ETS co-sponsored an educational data mining competition in which contestants were asked to predict efficient time use on the NAEP 8th grade mathematics computer-based assessment, based on the log file of a student's actions on a prior portion of the assessment. In…
Descriptors: Learning Analytics, Data Collection, Competition, Prediction
Zhang, Jiayi; Andres, Juliana Ma. Alexandra L.; Hutt, Stephen; Baker, Ryan S.; Ocumpaugh, Jaclyn; Nasiar, Nidhi; Mills, Caitlin; Brooks, Jamiella; Sethuaman, Sheela; Young, Tyron – Journal of Educational Data Mining, 2022
Self-regulated learning (SRL) is a critical component of mathematics problem-solving. Students skilled in SRL are more likely to effectively set goals, search for information, and direct their attention and cognitive process so that they align their efforts with their objectives. An influential framework for SRL, the SMART model (Winne, 2017),…
Descriptors: Problem Solving, Mathematics Instruction, Learning Management Systems, Learning Analytics
Bosch, Nigel – Journal of Educational Data Mining, 2021
Automatic machine learning (AutoML) methods automate the time-consuming, feature-engineering process so that researchers produce accurate student models more quickly and easily. In this paper, we compare two AutoML feature engineering methods in the context of the National Assessment of Educational Progress (NAEP) data mining competition. The…
Descriptors: Accuracy, Learning Analytics, Models, National Competency Tests
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Emara, Mona; Hutchins, Nicole M.; Grover, Shuchi; Snyder, Caitlin; Biswas, Gautam – Journal of Learning Analytics, 2021
The integration of computational modelling in science classrooms provides a unique opportunity to promote key 21st century skills including computational thinking (CT) and collaboration. The open-ended, problem-solving nature of the task requires groups to grapple with the combination of two domains (science and computing) as they collaboratively…
Descriptors: Cooperative Learning, Self Management, Metacognition, Computer Science Education
Previous Page | Next Page ยป
Pages: 1 | 2