Publication Date
| In 2026 | 0 |
| Since 2025 | 6 |
| Since 2022 (last 5 years) | 20 |
Descriptor
| Computer Peripherals | 20 |
| Models | 20 |
| Printing | 17 |
| Technology Uses in Education | 7 |
| Teaching Methods | 6 |
| Science Instruction | 5 |
| Scientific Concepts | 5 |
| Anatomy | 4 |
| Educational Technology | 4 |
| Foreign Countries | 4 |
| Hands on Science | 4 |
| More ▼ | |
Source
Author
| A^ngelo F. Pitanga | 1 |
| Altiok, Serhat | 1 |
| Andic, Branko | 1 |
| Angélica Benito | 1 |
| Balaji, B. S. | 1 |
| Boiangiu Razvan-Stefan | 1 |
| Brian Davis | 1 |
| Chan, Kai Lok | 1 |
| Christian Myles | 1 |
| Cvjeticanin, Stanko | 1 |
| Dana-Picard, Thierry | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 20 |
| Reports - Research | 14 |
| Reports - Descriptive | 5 |
| Reports - Evaluative | 1 |
| Tests/Questionnaires | 1 |
Education Level
| Higher Education | 6 |
| Postsecondary Education | 6 |
| Secondary Education | 5 |
| High Schools | 4 |
| Elementary Education | 2 |
| Grade 9 | 1 |
Audience
Location
| Brazil | 1 |
| Spain (Madrid) | 1 |
| Taiwan | 1 |
| United Kingdom | 1 |
| Wisconsin | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Megan Johnson; Brian Davis; Gerard Guillot; Emily Porta-Miller; Jennifer Brueckner-Collins – Anatomical Sciences Education, 2025
A deep understanding of pelvic floor anatomy requires a three-dimensional visualization of the spatial relationships among pelvic neurovasculature, soft tissue structures, and bony landmarks, which are highly complex and difficult to comprehend solely through traditional teaching methods such as didactic lectures and anatomical dissection. This…
Descriptors: Teaching Methods, Computer Peripherals, Printing, Anatomy
Christian Myles; Laura Gorman; James F. X. Jones – Anatomical Sciences Education, 2025
Textbook anatomy depiction of the hepatobiliary tree is present in 55%-62% of the population. Misidentification of hepatobiliary variants can lead to bile duct injuries in cholecystectomies. A better understanding of variants has been cited as a key area for improvement in anatomy education. The aim of this study was to compare the effectiveness…
Descriptors: Computer Peripherals, Printing, Science Instruction, Teaching Methods
Rong, Wenge; Xu, Tianfan; Sun, Zhiwei; Sun, Zian; Ouyang, Yuanxin; Xiong, Zhang – IEEE Transactions on Education, 2023
Contribution: In this study, an object tuple model has been proposed, and a quasi-experimental study on its usage in an introductory programming language course has been reported. This work can be adopted by all C language teachers and students in learning pointer and array-related concepts. Background: C language has been extensively employed in…
Descriptors: Models, Introductory Courses, Programming, Computer Science Education
Milici, Pietro; Plantevin, Frédérique; Salvi, Massimo – International Journal of Mathematical Education in Science and Technology, 2022
We propose an original machine that traces conics and some transcendental curves (oblique trajectories of confocal conics) by the solution of inverse tangent problems. For such a machine, we also provide the 3D-printable model to be used as an intriguing supplement for geometry, calculus, or ordinary differential equations classes.
Descriptors: Computer Peripherals, Printing, Geometry, Geometric Concepts
Seyda Gul; Funda Yalinkilic – Education and Information Technologies, 2025
In recent years, 3D printing technology or 3D printing models have become a powerful educational tool used in many fields such as medicine, engineering and science. However, research on the integration of these technologies into formal educational environments and the researches examining their effect on students' learning biology is quite…
Descriptors: Science Education, Science Instruction, Teaching Methods, Biochemistry
Boiangiu Razvan-Stefan; Popa Laura Nicoleta; Marius Miha?an – Biochemistry and Molecular Biology Education, 2025
A strong understanding of molecular structure is key for mastering structure-function concepts in life sciences and is based on the visualization of biomolecules. Therefore, various approaches to help students translate between the 2D space of a textbook figure to the 3D space of a molecule have been developed. Object-based learning is an approach…
Descriptors: Computer Peripherals, Printing, Molecular Structure, Scientific Concepts
Ivaylo Staribratov; Nikol Manolova – Discover Education, 2024
The article presents the application of 3D technologies in STEAM education through a conducted scientific research, highlighting the role of 3D modeling and 3D printing as an innovative approach in achieving an interdisciplinary learning model. The research included the following stages: preparation for designing a detailed 3D steam locomotive…
Descriptors: Art Education, STEM Education, Educational Technology, Technology Uses in Education
Jiro Kondo; Shota Nakamura – Journal of Chemical Education, 2023
The use of molecular models in chemistry and biochemistry classes is very effective in helping students understand covalent bonds and the chemical structure of molecules. However, conventional molecular models cannot represent intermolecular interactions such as hydrogen bonds and electrostatic interactions. Herein, we describe 3D printed…
Descriptors: Chemistry, Molecular Structure, Scientific Concepts, Biochemistry
Ionel Popa; Florin Saitis – Journal of Chemical Education, 2022
Proteins are "magical" workers inside our body, as they accomplish most of the cellular functions. Here we report on a novel approach to teach protein folding and unfolding, using magnets and flexible 3D-printed protein structures. To illustrate this physical process, we used colored circular magnets designed for whiteboards, connected…
Descriptors: Magnets, Printing, Computer Peripherals, Simulation
Jinga, Maria-Ruxandra; Lee, Rachel B. Y.; Chan, Kai Lok; Marway, Prabhvir S.; Nandapalan, Krishan; Rhode, Kawal; Kui, Christopher; Lee, Matthew – Anatomical Sciences Education, 2023
Three-dimensional (3D) segmentation, a process involving digitally marking anatomical structures on cross-sectional images such as computed tomography (CT), and 3D printing (3DP) are being increasingly utilized in medical education. Exposure to this technology within medical schools and hospitals remains limited in the United Kingdom. M3dicube UK,…
Descriptors: Computer Simulation, Computer Peripherals, Printing, Anatomy
Forringer, Edward Russell – Physics Teacher, 2022
In a 1993 book review, E. Pearlstein asks, "Why don't textbook authors begin their discussion of magnetism by talking about magnets? That's what students have experience with." A similar question can be asked, "Why don't professors have students measure the force between permanent magnets in introductory physics labs?" The…
Descriptors: Science Education, Physics, Magnets, Measurement
Accessible 3D Printing: Multicolor Molecular Models From Consumer-Grade, Single Filament 3D Printers
H. Martin; E. Eisner; J. K. Klosterman – Journal of Chemical Education, 2023
3D printers have facilitated a wealth of 3D printed molecular models illustrating key structural concepts for student learning. However, general adoption of 3D printed models in the organic chemistry classroom proceeds slowly as the majority of consumer-grade 3D (fused deposition modeling (FDM) and resin) printers are inherently monochromatic,…
Descriptors: Printing, Computer Peripherals, Molecular Structure, Organic Chemistry
Singhal, Ishu; Balaji, B. S. – Journal of Chemical Education, 2022
Learning to write chemical formulas of compounds is a basic and indispensable part of understanding and studying chemistry. However, it is hard for students with visual impairment to assess and learn molecular arrangements and formulas. For the convenience of such students with special needs, it is necessary to come up with easy, comprehensive,…
Descriptors: Open Source Technology, Chemistry, Computer Peripherals, Visual Impairments
Lin, Kuen-Yi; Lu, Shao-Chuan; Hsiao, Hsien-Hsien; Kao, Chia-Pin; Williams, P. John – Interactive Learning Environments, 2023
Over the past few years, digital fabrication has been utilized in technology laboratories to emphasize hands-on learning processes in technology and engineering education. Recent studies indicate that hands-on activities can help students connect with science, technology, engineering, and mathematics (STEM) disciplines and develop key skills…
Descriptors: STEM Education, Imagination, Vocational Interests, Repetition
Üçgül, Memet; Altiok, Serhat – Education and Information Technologies, 2023
3D printing technology has an influence on a variety of industries such as automotive, engineering, medical, aerospace, sports, fashion, education, and more. In education, 3D printing is used in many different fields like pharmacy, mathematics, biology, chemistry, art education, graphic design, engineering, and even in early childhood and special…
Descriptors: Preservice Teachers, Student Attitudes, Information Technology, Technology Integration
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
