Publication Date
| In 2026 | 0 |
| Since 2025 | 31 |
| Since 2022 (last 5 years) | 154 |
| Since 2017 (last 10 years) | 280 |
Descriptor
Source
Author
Publication Type
Education Level
Audience
| Researchers | 2 |
| Administrators | 1 |
| Students | 1 |
| Teachers | 1 |
Location
| Brazil | 5 |
| China | 5 |
| Germany | 5 |
| South Korea | 4 |
| Australia | 3 |
| Europe | 3 |
| Spain | 3 |
| United Kingdom | 3 |
| Illinois | 2 |
| Iran | 2 |
| Italy | 2 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Frank Lee; Alex Algarra – Information Systems Education Journal, 2025
This case study examines employee attrition, its detrimental effects on businesses, and the potential of data analytics to address this challenge. By employing Latent Dirichlet Allocation (LDA), a sophisticated NLP technique, we delve into the underlying reasons for employee departures. Additionally, we explore using RapidMiner to develop…
Descriptors: Labor Turnover, Data Analysis, Natural Language Processing, Employees
Brian Clements; Tamirat T. Abegaz; Bryson Payne – Information Systems Education Journal, 2025
The rise of artificial intelligence (AI) has made life and work easier; however, AI has also made it almost impossible to determine whether the information we consume is legitimate, AI-generated, or AI-manipulated. This paper examines how the use of artificial intelligence, specifically GPT-4, Gemini Advanced, and Claude Opus, can aid a user in…
Descriptors: Artificial Intelligence, Perception, Man Machine Systems, Natural Language Processing
Luis Eduardo Muñoz Guerrero; Yony Fernando Ceballos; Luis David Trejos Rojas – Contemporary Educational Technology, 2025
Recent progress made in conversational AI lays emphasis on the need for development of language models that possess solid logical reasoning skills and further extrapolated capabilities. An examination into this phenomenon investigates how well the Capybara dataset can improve one's ability to reason using language-based systems. Multiple…
Descriptors: Artificial Intelligence, Logical Thinking, Models, Natural Language Processing
Stanojevic, Miloš; Brennan, Jonathan R.; Dunagan, Donald; Steedman, Mark; Hale, John T. – Cognitive Science, 2023
To model behavioral and neural correlates of language comprehension in naturalistic environments, researchers have turned to broad-coverage tools from natural-language processing and machine learning. Where syntactic structure is explicitly modeled, prior work has relied predominantly on context-free grammars (CFGs), yet such formalisms are not…
Descriptors: Correlation, Language Processing, Brain Hemisphere Functions, Natural Language Processing
Q. Feltgen; G. Cislaru – Discourse Processes: A Multidisciplinary Journal, 2025
The broader aim of this study is the corpus-based investigation of the written language production process. To this end, temporal markers have been keylog recorded alongside the writing processes to exploit pauses to segment the speech product into linear units of performance. However, identifying these pauses requires selecting the relevant…
Descriptors: Writing Processes, Writing Skills, Written Language, Intervals
Javad Keyhan – International Journal of Technology in Education and Science, 2025
In recent years, remarkable advancements in artificial intelligence technology have created new opportunities for transforming educational systems and enhancing student learning. This study focuses on designing a model for an AI-based intelligent assistant to provide a personalized learning experience in higher education. A qualitative approach…
Descriptors: Individualized Instruction, Artificial Intelligence, Models, Higher Education
Liunian Li – ProQuest LLC, 2024
To build an Artificial Intelligence system that can assist us in daily lives, the ability to understand the world around us through visual input is essential. Prior studies train visual perception models by defining concept vocabularies and annotate data against the fixed vocabulary. It is hard to define a comprehensive set of everything, and thus…
Descriptors: Artificial Intelligence, Visual Stimuli, Visual Perception, Models
Kangkang Li; Chengyang Qian; Xianmin Yang – Education and Information Technologies, 2025
In learnersourcing, automatic evaluation of student-generated content (SGC) is significant as it streamlines the evaluation process, provides timely feedback, and enhances the objectivity of grading, ultimately supporting more effective and efficient learning outcomes. However, the methods of aggregating students' evaluations of SGC face the…
Descriptors: Student Developed Materials, Educational Quality, Automation, Artificial Intelligence
Todd Cherner; Teresa S. Foulger; Margaret Donnelly – TechTrends: Linking Research and Practice to Improve Learning, 2025
The ethics surrounding the development and deployment of generative artificial intelligence (genAI) is an important topic as institutions of higher education adopt the technology for educational purposes. Concurrently, stakeholders from various organizations have reviewed the literature about the ethics of genAI and proposed frameworks about it.…
Descriptors: Artificial Intelligence, Natural Language Processing, Decision Making, Models
Teo Susnjak – International Journal of Artificial Intelligence in Education, 2024
A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, At Risk Students
Nathan Lowien; Damon P. Thomas – Australian Journal of Language and Literacy, 2025
Cognitive-informed reading education research utilises models that are underpinned by the notion that reading is a mental process of word recognition multiplied by language comprehension. Examples of these models include the Simple View of Reading, the Cognitive Foundations Framework, the Reading Rope and the Active Model of Reading. These models…
Descriptors: Reading Research, Reading Instruction, Reading Processes, Word Recognition
Gerald Gartlehner; Leila Kahwati; Rainer Hilscher; Ian Thomas; Shannon Kugley; Karen Crotty; Meera Viswanathan; Barbara Nussbaumer-Streit; Graham Booth; Nathaniel Erskine; Amanda Konet; Robert Chew – Research Synthesis Methods, 2024
Data extraction is a crucial, yet labor-intensive and error-prone part of evidence synthesis. To date, efforts to harness machine learning for enhancing efficiency of the data extraction process have fallen short of achieving sufficient accuracy and usability. With the release of large language models (LLMs), new possibilities have emerged to…
Descriptors: Data Collection, Evidence, Synthesis, Language Processing
A Method for Generating Course Test Questions Based on Natural Language Processing and Deep Learning
Hei-Chia Wang; Yu-Hung Chiang; I-Fan Chen – Education and Information Technologies, 2024
Assessment is viewed as an important means to understand learners' performance in the learning process. A good assessment method is based on high-quality examination questions. However, generating high-quality examination questions manually by teachers is a time-consuming task, and it is not easy for students to obtain question banks. To solve…
Descriptors: Natural Language Processing, Test Construction, Test Items, Models
Hongming Li; Seiyon Lee; Anthony F. Botelho – International Educational Data Mining Society, 2024
Recent advances in the development of large language models (LLMs) have led to power innovative suites of generative AI tools that are capable of not only simulating human-like-dialogue but also composing more complex artifacts, such as social media posts, essays, and even research articles. While this abstract has been written entirely by a human…
Descriptors: Artificial Intelligence, Natural Language Processing, Academic Language, Writing (Composition)
Albornoz-De Luise, Romina Soledad; Arevalillo-Herraez, Miguel; Arnau, David – IEEE Transactions on Learning Technologies, 2023
In this article, we analyze the potential of conversational frameworks to support the adaptation of existing tutoring systems to a natural language form of interaction. We have based our research on a pilot study, in which the open-source machine learning framework Rasa has been used to build a conversational agent that interacts with an existing…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Artificial Intelligence, Models

Peer reviewed
Direct link
