Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 3 |
Descriptor
Learning Analytics | 3 |
Models | 3 |
Prediction | 3 |
Electronic Learning | 2 |
Accountability | 1 |
Artificial Intelligence | 1 |
At Risk Students | 1 |
Bayesian Statistics | 1 |
Courses | 1 |
Data Collection | 1 |
Dropouts | 1 |
More ▼ |
Author
Xing, Wanli | 3 |
Bakhshi, Ali | 1 |
Chiu, Kuo-Chun | 1 |
Du, Dongping | 1 |
Du, Hanxiang | 1 |
Leite, Walter | 1 |
Li, Chenglu | 1 |
Pei, Bo | 1 |
Publication Type
Reports - Research | 3 |
Journal Articles | 2 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Li, Chenglu; Xing, Wanli; Leite, Walter – Grantee Submission, 2021
To support online learners at a large scale, extensive studies have adopted machine learning (ML) techniques to analyze students' artifacts and predict their learning outcomes automatically. However, limited attention has been paid to the fairness of prediction with ML in educational settings. This study intends to fill the gap by introducing a…
Descriptors: Learning Analytics, Prediction, Models, Electronic Learning
Xing, Wanli; Du, Dongping; Bakhshi, Ali; Chiu, Kuo-Chun; Du, Hanxiang – IEEE Transactions on Learning Technologies, 2021
Predictive modeling in online education is a popular topic in learning analytics research and practice. This study proposes a novel predictive modeling method to improve model transferability over time within the same course and across different courses. The research gaps addressed are limited evidence showing whether a predictive model built on…
Descriptors: Electronic Learning, Bayesian Statistics, Prediction, Models
Pei, Bo; Xing, Wanli – Journal of Educational Computing Research, 2022
This paper introduces a novel approach to identify at-risk students with a focus on output interpretability through analyzing learning activities at a finer granularity on a weekly basis. Specifically, this approach converts the predicted output from the former weeks into meaningful probabilities to infer the predictions in the current week for…
Descriptors: At Risk Students, Learning Analytics, Information Retrieval, Models