NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Michael Y.; Callaway, Fred; Thompson, William D.; Adams, Ryan P.; Griffiths, Thomas L. – Cognitive Science, 2023
Humans can learn complex functional relationships between variables from small amounts of data. In doing so, they draw on prior expectations about the form of these relationships. In three experiments, we show that people learn to adjust these expectations through experience, learning about the likely forms of the functions they will encounter.…
Descriptors: Learning Processes, Expectation, Experience, Relationship
Peer reviewed Peer reviewed
Direct linkDirect link
Austerweil, Joseph L.; Griffiths, Thomas L.; Palmer, Stephen E. – Cognitive Science, 2017
How does the visual system recognize images of a novel object after a single observation despite possible variations in the viewpoint of that object relative to the observer? One possibility is comparing the image with a prototype for invariance over a relevant transformation set (e.g., translations and dilations). However, invariance over…
Descriptors: Prior Learning, Inferences, Visual Acuity, Recognition (Psychology)
Peer reviewed Peer reviewed
Direct linkDirect link
Kemp, Charles; Tenenbaum, Joshua B.; Niyogi, Sourabh; Griffiths, Thomas L. – Cognition, 2010
Concept learning is challenging in part because the meanings of many concepts depend on their relationships to other concepts. Learning these concepts in isolation can be difficult, but we present a model that discovers entire systems of related concepts. These systems can be viewed as simple theories that specify the concepts that exist in a…
Descriptors: Family Relationship, Logical Thinking, Models, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Goodman, Noah D.; Tenenbaum, Joshua B.; Feldman, Jacob; Griffiths, Thomas L. – Cognitive Science, 2008
This article proposes a new model of human concept learning that provides a rational analysis of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space--a concept language of logical rules. This article compares the model predictions to human generalization judgments in several…
Descriptors: Mathematics Education, Concept Formation, Models, Prediction