NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew; Chen, Yinghan – Journal of Educational and Behavioral Statistics, 2019
Exploratory cognitive diagnosis models (CDMs) estimate the Q matrix, which is a binary matrix that indicates the attributes needed for affirmative responses to each item. Estimation of Q is an important next step for improving classifications and broadening application of CDMs. Prior research primarily focused on an exploratory version of the…
Descriptors: Cognitive Measurement, Models, Bayesian Statistics, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Shiyu; Yang, Yan; Culpepper, Steven Andrew; Douglas, Jeffrey A. – Journal of Educational and Behavioral Statistics, 2018
A family of learning models that integrates a cognitive diagnostic model and a higher-order, hidden Markov model in one framework is proposed. This new framework includes covariates to model skill transition in the learning environment. A Bayesian formulation is adopted to estimate parameters from a learning model. The developed methods are…
Descriptors: Skill Development, Cognitive Measurement, Cognitive Processes, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew; Park, Trevor – Journal of Educational and Behavioral Statistics, 2017
A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model…
Descriptors: Bayesian Statistics, Multivariate Analysis, Item Response Theory, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew – Journal of Educational and Behavioral Statistics, 2015
A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…
Descriptors: Bayesian Statistics, Models, Sampling, Computation