NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Marwan, Samiha; Shi, Yang; Menezes, Ian; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2021
Feedback on how students progress through completing subgoals can improve students' learning and motivation in programming. Detecting subgoal completion is a challenging task, and most learning environments do so either with "expert-authored" models or with "data-driven" models. Both models have advantages that are…
Descriptors: Expertise, Models, Feedback (Response), Identification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Crossley, Scott; Barnes, Tiffany; Lynch, Collin; McNamara, Danielle S. – International Educational Data Mining Society, 2017
This study takes a novel approach toward understanding success in a math course by examining the linguistic features and affect of students' language production within a blended (with both on-line and traditional face to face instruction) undergraduate course (n=158) on discrete mathematics. Three linear effects models were compared: (a) a…
Descriptors: Success, Mathematics Instruction, Language Usage, Blended Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Zhi, Rui; Khoshnevisan, Farzaneh; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be effective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this…
Descriptors: Difficulty Level, Learning Activities, Prediction, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Stamper, John; Barnes, Tiffany; Croy, Marvin – International Journal of Artificial Intelligence in Education, 2011
The Hint Factory is an implementation of our novel method to automatically generate hints using past student data for a logic tutor. One disadvantage of the Hint Factory is the time needed to gather enough data on new problems in order to provide hints. In this paper we describe the use of expert sample solutions to "seed" the hint generation…
Descriptors: Cues, Prompting, Learning Strategies, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Barnes, Tiffany; Stamper, John – Educational Technology & Society, 2010
In building intelligent tutoring systems, it is critical to be able to understand and diagnose student responses in interactive problem solving. However, building this understanding into a computer-based intelligent tutor is a time-intensive process usually conducted by subject experts. Much of this time is spent in building production rules that…
Descriptors: Intelligent Tutoring Systems, Logical Thinking, Tutors, Probability