NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Weiglein, Alice; Gerstner, Florian; Mancini, Nino; Schleyer, Michael; Gerber, Bertram – Learning & Memory, 2019
Animals of many species are capable of "small data" learning, that is, of learning without repetition. Here we introduce larval "Drosophila melanogaster" as a relatively simple study case for such one-trial learning. Using odor-food associative conditioning, we first show that a sugar that is both sweet and nutritious…
Descriptors: Animals, Associative Learning, Conditioning, Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Boisselier, Lise; Ferry, Barbara; Gervais, Rémi – Learning & Memory, 2017
The hippocampal formation has been extensively described as a key component for object recognition in conjunction with place and context. The present study aimed at describing neural mechanisms in the hippocampal formation that support olfactory-tactile (OT) object discrimination in a task where space and context were not taken into account. The…
Descriptors: Animals, Role, Brain Hemisphere Functions, Olfactory Perception
Peer reviewed Peer reviewed
Direct linkDirect link
Tong, Michelle T.; Kim, Tae-Young P.; Cleland, Thomas A. – Learning & Memory, 2018
Long-term fear memory formation in the hippocampus and neocortex depends upon brain-derived neurotrophic factor (BDNF) signaling after acquisition. Incremental, appetitive odor discrimination learning is thought to depend substantially on the differentiation of adult-born neurons within the olfactory bulb (OB)--a process that is closely associated…
Descriptors: Memory, Olfactory Perception, Role, Animals
Peer reviewed Peer reviewed
Direct linkDirect link
Raccuglia, Davide; Mueller, Uli – Learning & Memory, 2013
Throughout the animal kingdom, the inhibitory neurotransmitter ?-aminobutyric acid (GABA) is a key modulator of physiological processes including learning. With respect to associative learning, the exact time in which GABA interferes with the molecular events of learning has not yet been clearly defined. To address this issue, we used two…
Descriptors: Learning Processes, Associative Learning, Olfactory Perception, Animals
Peer reviewed Peer reviewed
Direct linkDirect link
Sekiguchi, Tatsuhiko; Furudate, Hiroyuki; Kimura, Tetsuya – Learning & Memory, 2010
The terrestrial slug "Limax" exhibits a highly developed ability to learn odors with a small nervous system. When a fluorescent dye, Lucifer Yellow (LY), is injected into the slug's body cavity after odor-taste associative conditioning, a group of neurons in the procerebral (PC) lobe, an olfactory center of the slug, is labeled by LY. We examined…
Descriptors: Conditioning, Olfactory Perception, Physiology, Brain Hemisphere Functions