Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 0 |
| Since 2007 (last 20 years) | 2 |
Descriptor
| Maximum Likelihood Statistics | 11 |
| Selection | 11 |
| Adaptive Testing | 6 |
| Computer Assisted Testing | 6 |
| Mathematical Models | 5 |
| Test Items | 5 |
| Bayesian Statistics | 4 |
| Simulation | 4 |
| Ability | 3 |
| Comparative Analysis | 2 |
| Computation | 2 |
| More ▼ | |
Source
| Psychometrika | 4 |
| Applied Measurement in… | 1 |
| Applied Psychological… | 1 |
| Psychological Methods | 1 |
| Structural Equation Modeling | 1 |
Author
| Dodd, Barbara G. | 2 |
| Akaike, Hirotugu | 1 |
| Berger, Martijn P. F. | 1 |
| DeSarbo, Wayne S. | 1 |
| Ho, Tsung-Han | 1 |
| Lee, Sik-Yum | 1 |
| Pek, Jolynn | 1 |
| Segall, Daniel O. | 1 |
| Song, Xin-Yuan | 1 |
| Sterba, Sonya K. | 1 |
| Takane, Yoshio | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 8 |
| Reports - Evaluative | 6 |
| Reports - Research | 4 |
| Reports - Descriptive | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ho, Tsung-Han; Dodd, Barbara G. – Applied Measurement in Education, 2012
In this study we compared five item selection procedures using three ability estimation methods in the context of a mixed-format adaptive test based on the generalized partial credit model. The item selection procedures used were maximum posterior weighted information, maximum expected information, maximum posterior weighted Kullback-Leibler…
Descriptors: Computer Assisted Testing, Adaptive Testing, Test Items, Selection
Sterba, Sonya K.; Pek, Jolynn – Psychological Methods, 2012
Researchers in psychology are increasingly using model selection strategies to decide among competing models, rather than evaluating the fit of a given model in isolation. However, such interest in model selection outpaces an awareness that one or a few cases can have disproportionate impact on the model ranking. Though case influence on the fit…
Descriptors: Psychological Studies, Models, Selection, Statistical Analysis
Peer reviewedAkaike, Hirotugu – Psychometrika, 1987
The Akaike Information Criterion (AIC) was introduced to extend the method of maximum likelihood to the multimodel situation. Use of the AIC in factor analysis is interesting when it is viewed as the choice of a Bayesian model; thus, wider applications of AIC are possible. (Author/GDC)
Descriptors: Bayesian Statistics, Factor Analysis, Mathematical Models, Maximum Likelihood Statistics
Peer reviewedSong, Xin-Yuan; Lee, Sik-Yum; Zhu, Hong-Tu – Structural Equation Modeling, 2001
Studied the maximum likelihood estimation of unknown parameters in a general LISREL-type model with mixed polytomous and continuous data through Monte Carlo simulation. Proposes a model selection procedure for obtaining good models for the underlying substantive theory and discusses the effectiveness of the proposed model. (SLD)
Descriptors: Maximum Likelihood Statistics, Monte Carlo Methods, Selection, Simulation
van der Linden, Wim J. – 1997
The case of adaptive testing under a multidimensional logistic response model is addressed. An adaptive algorithm is proposed that minimizes the (asymptotic) variance of the maximum-likelihood (ML) estimator of a linear combination of abilities of interest. The item selection criterion is a simple expression in closed form. In addition, it is…
Descriptors: Ability, Adaptive Testing, Algorithms, Computer Assisted Testing
Peer reviewedTakane, Yoshio; And Others – Psychometrika, 1987
A new method of multiple discriminant analysis allows a mixture of continuous and discrete predictors. It handles conditional, joint, or separate sampling. Subjects and criterion groups are represented as points in a multidimensional Euclidean space. Advantages of the method, deriving from Akaike Information Criterion model evaluation, are…
Descriptors: Adults, Discriminant Analysis, Evaluation Criteria, Mathematical Models
Weissman, Alexander – 2003
This study investigated the efficiency of item selection in a computerized adaptive test (CAT), where efficiency was defined in terms of the accumulated test information at an examinee's true ability level. A simulation methodology compared the efficiency of 2 item selection procedures with 5 ability estimation procedures for CATs of 5, 10, 15,…
Descriptors: Ability, Adaptive Testing, Computer Assisted Testing, Maximum Likelihood Statistics
Peer reviewedDodd, Barbara G. – Applied Psychological Measurement, 1990
Using one simulated and two real data sets, the effects of the systematic variation of the item-selection procedure and the stepsize method on the operating characteristics of computerized adaptive testing (CAT) for instruments with polychotomously scored rating scale items were studied. The six rating scale CAT procedures used performed well.…
Descriptors: Adaptive Testing, Attitude Measures, Comparative Analysis, Computer Assisted Testing
Veerkamp, Wim J. J.; Berger, Martijn P. F. – 1994
In this study some alternative item selection criteria for adaptive testing are proposed. These criteria take into account the uncertainty of the ability estimates. A general weighted information criterion is suggested of which the usual maximum information criterion and the suggested alternative criteria are special cases. A simulation study was…
Descriptors: Ability, Adaptive Testing, Bayesian Statistics, Computer Assisted Testing
Peer reviewedSegall, Daniel O. – Psychometrika, 1996
Maximum likelihood and Bayesian procedures are presented for item selection and scoring of multidimensional adaptive tests. A demonstration with simulated response data illustrates that multidimensional adaptive testing can provide equal or higher reliabilities with fewer items than are required in one-dimensional adaptive testing. (SLD)
Descriptors: Adaptive Testing, Bayesian Statistics, Computer Assisted Testing, Equations (Mathematics)
Peer reviewedDeSarbo, Wayne S.; And Others – Psychometrika, 1996
A stochastic multidimensional unfolding (MDU) procedure is presented to represent individual differences in phased or sequential decision processes spatially. A Monte Carlo analysis demonstrates estimation proficiency and the appropriateness of the proposed model selection heuristic, and an application to capture awareness, consideration, and…
Descriptors: Cognitive Processes, Consumer Economics, Decision Making, Estimation (Mathematics)

Direct link
