Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 0 |
| Since 2007 (last 20 years) | 2 |
Descriptor
| Bayesian Statistics | 4 |
| Matrices | 4 |
| Maximum Likelihood Statistics | 4 |
| Computation | 3 |
| Educational Research | 3 |
| Statistical Analysis | 3 |
| Factor Analysis | 2 |
| Hierarchical Linear Modeling | 2 |
| Regression (Statistics) | 2 |
| Statistical Inference | 2 |
| Alternative Assessment | 1 |
| More ▼ | |
Author
| Chung, Yeojin | 2 |
| Dorie, Vincent | 2 |
| Gelman, Andrew | 2 |
| Liu, Jingchen | 2 |
| Rabe-Hesketh, Sophia | 2 |
| Arav, Marina | 1 |
| Hayashi, Kentaro | 1 |
| Pruzek, Robert | 1 |
| Rabinowitz, Stanley N. | 1 |
Publication Type
| Journal Articles | 3 |
| Reports - Research | 3 |
| Information Analyses | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Journal of Educational and Behavioral Statistics, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (S) of group-level varying coefficients are often degenerate. One can do better, even from…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent – Grantee Submission, 2015
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix [sigma] of group-level varying coefficients are often degenerate. One can do better, even…
Descriptors: Regression (Statistics), Hierarchical Linear Modeling, Bayesian Statistics, Statistical Inference
Hayashi, Kentaro; Arav, Marina – Educational and Psychological Measurement, 2006
In traditional factor analysis, the variance-covariance matrix or the correlation matrix has often been a form of inputting data. In contrast, in Bayesian factor analysis, the entire data set is typically required to compute the posterior estimates, such as Bayes factor loadings and Bayes unique variances. We propose a simple method for computing…
Descriptors: Bayesian Statistics, Factor Analysis, Correlation, Matrices
Rabinowitz, Stanley N.; Pruzek, Robert – 1978
Despite advances in common factor analysis, a review of 89 studies published in four selected journals between 1963 and 1976 indicated that behavioral scientists preferred principal components analysis, followed by varimax or orthogonal rotation. Resultant row sums of squares of factor matrices from principal component analyses of real data sets…
Descriptors: Bayesian Statistics, Comparative Analysis, Educational Research, Factor Analysis

Peer reviewed
Direct link
