Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 6 |
| Since 2017 (last 10 years) | 18 |
| Since 2007 (last 20 years) | 50 |
Descriptor
| Evaluation Methods | 69 |
| Maximum Likelihood Statistics | 69 |
| Computation | 31 |
| Simulation | 24 |
| Statistical Analysis | 20 |
| Item Response Theory | 18 |
| Error of Measurement | 17 |
| Factor Analysis | 15 |
| Comparative Analysis | 13 |
| Models | 13 |
| Sample Size | 12 |
| More ▼ | |
Source
Author
| Savalei, Victoria | 4 |
| Yuan, Ke-Hai | 4 |
| Woods, Carol M. | 3 |
| Cai, Li | 2 |
| Finch, Holmes | 2 |
| Adwere-Boamah, Joseph | 1 |
| Ahlgren Reddy, Alison | 1 |
| Al-Qataee, Abdullah A. | 1 |
| Amota Ataneka | 1 |
| Ann M. Aviles | 1 |
| Antal, Tamás | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 59 |
| Reports - Research | 40 |
| Reports - Evaluative | 15 |
| Reports - Descriptive | 11 |
| Dissertations/Theses -… | 2 |
| Information Analyses | 2 |
| Speeches/Meeting Papers | 2 |
| Numerical/Quantitative Data | 1 |
Education Level
| Higher Education | 4 |
| Postsecondary Education | 3 |
| Adult Education | 2 |
| Elementary Education | 2 |
| Early Childhood Education | 1 |
| Grade 5 | 1 |
| Intermediate Grades | 1 |
| Middle Schools | 1 |
| Primary Education | 1 |
Audience
| Researchers | 2 |
| Practitioners | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| National Assessment of… | 2 |
What Works Clearinghouse Rating
Yasuhiro Yamamoto; Yasuo Miyazaki – Journal of Experimental Education, 2025
Bayesian methods have been said to solve small sample problems in frequentist methods by reflecting prior knowledge in the prior distribution. However, there are dangers in strongly reflecting prior knowledge or situations where much prior knowledge cannot be used. In order to address the issue, in this article, we considered to apply two Bayesian…
Descriptors: Sample Size, Hierarchical Linear Modeling, Bayesian Statistics, Prior Learning
Ming-Chi Tseng – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study simplifies the seven different cross-lagged panel models (CLPMs) by using the RSEM model for both inter-individual and intra-individual structures. In addition, the study incorporates the newly developed dynamic panel model (DPM), general cross-lagged model (GCLM) and the random intercept auto-regressive moving average (RI-ARMA) model.…
Descriptors: Evaluation Methods, Structural Equation Models, Maximum Likelihood Statistics, Longitudinal Studies
Zachary K. Collier; Minji Kong; Olushola Soyoye; Kamal Chawla; Ann M. Aviles; Yasser Payne – Journal of Educational and Behavioral Statistics, 2024
Asymmetric Likert-type items in research studies can present several challenges in data analysis, particularly concerning missing data. These items are often characterized by a skewed scaling, where either there is no neutral response option or an unequal number of possible positive and negative responses. The use of conventional techniques, such…
Descriptors: Likert Scales, Test Items, Item Analysis, Evaluation Methods
Van Lissa, Caspar J.; van Erp, Sara; Clapper, Eli-Boaz – Research Synthesis Methods, 2023
When meta-analyzing heterogeneous bodies of literature, meta-regression can be used to account for potentially relevant between-studies differences. A key challenge is that the number of candidate moderators is often high relative to the number of studies. This introduces risks of overfitting, spurious results, and model non-convergence. To…
Descriptors: Bayesian Statistics, Regression (Statistics), Maximum Likelihood Statistics, Meta Analysis
Raykov, Tenko; Al-Qataee, Abdullah A.; Dimitrov, Dimiter M. – Educational and Psychological Measurement, 2020
A procedure for evaluation of validity related coefficients and their differences is discussed, which is applicable when one or more frequently used assumptions in empirical educational, behavioral and social research are violated. The method is developed within the framework of the latent variable modeling methodology and accomplishes point and…
Descriptors: Validity, Evaluation Methods, Social Science Research, Correlation
Ben Kelcey; Fangxing Bai; Amota Ataneka; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2024
We develop a structural after measurement (SAM) method for structural equation models (SEMs) that accommodates missing data. The results show that the proposed SAM missing data estimator outperforms conventional full information (FI) estimators in terms of convergence, bias, and root-mean-square-error in small-to-moderate samples or large samples…
Descriptors: Structural Equation Models, Research Problems, Error of Measurement, Maximum Likelihood Statistics
Jobst, Lisa J.; Auerswald, Max; Moshagen, Morten – Educational and Psychological Measurement, 2022
Prior studies investigating the effects of non-normality in structural equation modeling typically induced non-normality in the indicator variables. This procedure neglects the factor analytic structure of the data, which is defined as the sum of latent variables and errors, so it is unclear whether previous results hold if the source of…
Descriptors: Goodness of Fit, Structural Equation Models, Error of Measurement, Factor Analysis
Hosseinzadeh, Mostafa – ProQuest LLC, 2021
In real-world situations, multidimensional data may appear on large-scale tests or attitudinal surveys. A simple structure, multidimensional model may be used to evaluate the items, ignoring the cross-loading of some items on the secondary dimension. The purpose of this study was to investigate the influence of structure complexity magnitude of…
Descriptors: Item Response Theory, Models, Simulation, Evaluation Methods
Langan, Dean; Higgins, Julian P. T.; Jackson, Dan; Bowden, Jack; Veroniki, Areti Angeliki; Kontopantelis, Evangelos; Viechtbauer, Wolfgang; Simmonds, Mark – Research Synthesis Methods, 2019
Studies combined in a meta-analysis often have differences in their design and conduct that can lead to heterogeneous results. A random-effects model accounts for these differences in the underlying study effects, which includes a heterogeneity variance parameter. The DerSimonian-Laird method is often used to estimate the heterogeneity variance,…
Descriptors: Simulation, Meta Analysis, Health, Comparative Analysis
Wyse, Adam E. – Educational Measurement: Issues and Practice, 2017
This article illustrates five different methods for estimating Angoff cut scores using item response theory (IRT) models. These include maximum likelihood (ML), expected a priori (EAP), modal a priori (MAP), and weighted maximum likelihood (WML) estimators, as well as the most commonly used approach based on translating ratings through the test…
Descriptors: Cutting Scores, Item Response Theory, Bayesian Statistics, Maximum Likelihood Statistics
Haberman, Shelby J.; Lee, Yi-Hsuan – ETS Research Report Series, 2017
In investigations of unusual testing behavior, a common question is whether a specific pattern of responses occurs unusually often within a group of examinees. In many current tests, modern communication techniques can permit quite large numbers of examinees to share keys, or common response patterns, to the entire test. To address this issue,…
Descriptors: Student Evaluation, Testing, Item Response Theory, Maximum Likelihood Statistics
Suero, Manuel; Privado, Jesús; Botella, Juan – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
A simulation study is presented to evaluate and compare three methods to estimate the variance of the estimates of the parameters d and "C" of the signal detection theory (SDT). Several methods have been proposed to calculate the variance of their estimators, "d'" and "c." Those methods have been mostly assessed by…
Descriptors: Evaluation Methods, Theories, Simulation, Statistical Analysis
Moothedath, Shana; Chaporkar, Prasanna; Belur, Madhu N. – Perspectives in Education, 2016
In recent years, the computerised adaptive test (CAT) has gained popularity over conventional exams in evaluating student capabilities with desired accuracy. However, the key limitation of CAT is that it requires a large pool of pre-calibrated questions. In the absence of such a pre-calibrated question bank, offline exams with uncalibrated…
Descriptors: Guessing (Tests), Computer Assisted Testing, Adaptive Testing, Maximum Likelihood Statistics
Li, Jian; Lomax, Richard G. – Journal of Experimental Education, 2017
Using Monte Carlo simulations, this research examined the performance of four missing data methods in SEM under different multivariate distributional conditions. The effects of four independent variables (sample size, missing proportion, distribution shape, and factor loading magnitude) were investigated on six outcome variables: convergence rate,…
Descriptors: Monte Carlo Methods, Structural Equation Models, Evaluation Methods, Measurement Techniques
McNeish, Daniel; Harring, Jeffrey R. – Educational and Psychological Measurement, 2017
To date, small sample problems with latent growth models (LGMs) have not received the amount of attention in the literature as related mixed-effect models (MEMs). Although many models can be interchangeably framed as a LGM or a MEM, LGMs uniquely provide criteria to assess global data-model fit. However, previous studies have demonstrated poor…
Descriptors: Growth Models, Goodness of Fit, Error Correction, Sampling

Peer reviewed
Direct link
