Descriptor
Source
Author
| Kenney, Margaret J., Ed. | 2 |
| Palmer, Don | 2 |
| Thompson, Charles S. | 2 |
| Van de Walle, John | 2 |
| Archer, J. Andrew | 1 |
| Aslan, Farhad | 1 |
| Baldridge, Phyllis | 1 |
| Ball, Stanley | 1 |
| Barclay, Tim | 1 |
| Bates, Tom | 1 |
| Baxter, R. J. | 1 |
| More ▼ | |
Publication Type
Education Level
Audience
| Practitioners | 129 |
| Teachers | 60 |
| Researchers | 6 |
| Policymakers | 1 |
| Students | 1 |
Location
| Australia | 2 |
| Brazil | 1 |
| United Kingdom (England) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Peer reviewedLuciano, Dennis; Prichett, Gordon – College Mathematics Journal, 1987
Linear ciphers, substitution ciphers, public-key cryptosystems, and trapdoor knapsacks are each discussed. (MNS)
Descriptors: Algebra, Algorithms, College Mathematics, Cryptography
Peer reviewedSweeney-Starke, Nancy L.; Episcopo, Shelly – New York State Mathematics Teachers' Journal, 1996
Describes a lesson on long division using chip trading which follows that algorithm for long division. (MKR)
Descriptors: Algorithms, Arithmetic, Division, Elementary Education
Peer reviewedBates, Tom; Rousseau, Leo – Arithmetic Teacher, 1986
The mathematics associated with division is discussed, working from a theorem for the real division algorithm. Real-world, geometric, and algebraic approaches are discussed, as are related topics. (MNS)
Descriptors: Algorithms, Computation, Division, Elementary Education
Peer reviewedBaxter, R. J. – Australian Mathematics Teacher, 1982
A technique for doing long division without the usual estimation difficulty is presented. It uses multiples of 2 combined with a recording technique. (MNS)
Descriptors: Algorithms, Computation, Division, Elementary Education
Peer reviewedQuinn, Robert J. – Australian Mathematics Teacher, 2000
Discusses an algorithm that converts a fraction in simplest form into a terminating decimal and allows students to explore the efficacy and conceptual bases of a mathematical algorithm. (ASK)
Descriptors: Algorithms, Fractions, High Schools, Mathematics Activities
Peer reviewedPerso, Thelma – Australian Mathematics Teacher, 1996
Presents a method for solving linear equations involving the use of inverses instead of memorizing rules. (MKR)
Descriptors: Algebra, Algorithms, Equations (Mathematics), Mathematics Instruction
Peer reviewedEttline, J. Fred – Arithmetic Teacher, 1985
Two difficulties that students have in computing with fractions are idenfitied. Then a procedure is described, stressing the identity element, that resolves these difficulties and increases students' understanding and retention. (MNS)
Descriptors: Algorithms, Elementary Education, Elementary School Mathematics, Fractions
Peer reviewedSchelin, Charles W. – American Mathematical Monthly, 1983
The general algorithm used in most hand calculators to approximate elementary functions is discussed. Comments on tabular function values and on computer function evaluation are given first; then the CORDIC (Coordinate Rotation Digital Computer) scheme is described. (MNS)
Descriptors: Algorithms, Calculators, College Mathematics, Functions (Mathematics)
Peer reviewedNievergelt, Yves – American Mathematical Monthly, 1991
Described are ways that errors of magnitude can be unwittingly caused when using various supercalculator algorithms to solve linear systems of equations that are represented by nearly singular matrices. Precautionary measures for the unwary student are included. (JJK)
Descriptors: Algorithms, Calculators, College Mathematics, Higher Education
Peer reviewedCurcio, Frances R.; Schwartz, Sydney L. – Teaching Children Mathematics, 1998
Suggests that issues surrounding the teaching of algorithms focus not on whether to teach them but rather on balancing and connecting the development of algorithmic thinking. Presents an approach to help students develop their algorithmic thinking. Contains 18 references. (ASK)
Descriptors: Algorithms, Elementary Education, Mathematics Activities, Mathematics Instruction
Peer reviewedShyers, Joan H. – Mathematics Teacher, 1987
Circuits are described, with discussion on how to help students find the algorithms to solve a variety of problems involving circuits. (MNS)
Descriptors: Algorithms, Geometric Concepts, Mathematics Instruction, Problem Solving
Peer reviewedMansheim, Jan; Baldridge, Phyllis – Mathematics Teacher, 1987
How set theory, combinatorics, probability, and the study of algorithms can be used in solving two problems is described in detail. Three computer programs are listed. (MNS)
Descriptors: Algorithms, Computer Software, Flow Charts, Learning Activities
Peer reviewedBidwell, James K. – College Mathematics Journal, 1986
A possible method of derivation of prescriptions for solving problems, found in Babylonian cuneiform texts, is presented. It is a kind of "geometric algebra" based mainly on one figure and the manipulation of or within various areas and segments. (MNS)
Descriptors: Algebra, Algorithms, College Mathematics, Geometric Concepts
Peer reviewedPearson, Eleanor S. – Arithmetic Teacher, 1986
Computational algorithms from American textbooks copyrighted prior to 1900 are presented--some that convey the concept, some just for special cases, and some just for fun. Algorithms for each operation with whole numbers are presented and analyzed. (MNS)
Descriptors: Algorithms, Computation, Division, Elementary Education
Peer reviewedReimann, Kurt W. – Mathematics Teacher, 1980
A generalized method of synthetic division where the divisor polynomial may be of any degree equal to or larger than 1, and the dividend polynomial may be of equal or larger degree than the divisor polynomial and a generalization of the familiar remainder theorem, are presented. (Author/MK)
Descriptors: Algebra, Algorithms, Division, Mathematics Curriculum


