Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 14 |
Descriptor
Bayesian Statistics | 14 |
Computation | 14 |
Mathematics Achievement | 14 |
Models | 9 |
Achievement Tests | 6 |
Mathematics Tests | 5 |
Academic Achievement | 4 |
Classification | 4 |
Foreign Countries | 4 |
International Assessment | 4 |
Scores | 4 |
More ▼ |
Source
Author
McCaffrey, Daniel F. | 4 |
Lockwood, J. R. | 3 |
Mariano, Louis T. | 2 |
Arenson, Ethan A. | 1 |
Ayesha Sohail | 1 |
Barnes, Tiffany, Ed. | 1 |
Chen, Yi-Hsin | 1 |
Choi, Kilchan | 1 |
Dalal, Siddhartha R. | 1 |
Han, Bing | 1 |
Hershkovitz, Arnon, Ed. | 1 |
More ▼ |
Publication Type
Journal Articles | 12 |
Reports - Research | 10 |
Reports - Descriptive | 2 |
Collected Works - Proceedings | 1 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Armenia | 1 |
Austria | 1 |
China | 1 |
Iran | 1 |
Norway | 1 |
Ohio (Columbus) | 1 |
Pennsylvania | 1 |
Tunisia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Trends in International… | 4 |
National Longitudinal Survey… | 1 |
Peabody Individual… | 1 |
What Works Clearinghouse Rating
Hsu, Chia-Ling; Chen, Yi-Hsin; Wu, Yi-Jhen – Practical Assessment, Research & Evaluation, 2023
Correct specifications of hierarchical attribute structures in analyses using diagnostic classification models (DCMs) are pivotal because misspecifications can lead to biased parameter estimations and inaccurate classification profiles. This research is aimed to demonstrate DCM analyses with various hierarchical attribute structures via Bayesian…
Descriptors: Bayesian Statistics, Computation, International Assessment, Achievement Tests
Ayesha Sohail; Huma Akram – Pedagogical Research, 2025
The ability to properly evaluate one's own academic progress has long been considered a predictor of academic success. However, its distinctive role in the context of computational mathematics remains underexplored. Grounded in social cognitive theory, this study investigates the critical role of self-regulated learning (SRL) strategies in…
Descriptors: Undergraduate Students, Mathematics Education, Mathematics Achievement, Self Evaluation (Individuals)
Lyu, Weicong; Kim, Jee-Seon; Suk, Youmi – Journal of Educational and Behavioral Statistics, 2023
This article presents a latent class model for multilevel data to identify latent subgroups and estimate heterogeneous treatment effects. Unlike sequential approaches that partition data first and then estimate average treatment effects (ATEs) within classes, we employ a Bayesian procedure to jointly estimate mixing probability, selection, and…
Descriptors: Hierarchical Linear Modeling, Bayesian Statistics, Causal Models, Statistical Inference
Kim, Dan; Opfer, John E. – Developmental Psychology, 2017
Representations of numerical value have been assessed by using bounded (e.g., 0-1,000) and unbounded (e.g., 0-?) number-line tasks, with considerable debate regarding whether 1 or both tasks elicit unique cognitive strategies (e.g., addition or subtraction) and require unique cognitive models. To test this, we examined how well a mixed log-linear…
Descriptors: Computation, Numbers, Children, Cognitive Development
Sen, Sedat – International Journal of Testing, 2018
Recent research has shown that over-extraction of latent classes can be observed in the Bayesian estimation of the mixed Rasch model when the distribution of ability is non-normal. This study examined the effect of non-normal ability distributions on the number of latent classes in the mixed Rasch model when estimated with maximum likelihood…
Descriptors: Item Response Theory, Comparative Analysis, Computation, Maximum Likelihood Statistics
Arenson, Ethan A.; Karabatsos, George – Grantee Submission, 2017
Item response models typically assume that the item characteristic (step) curves follow a logistic or normal cumulative distribution function, which are strictly monotone functions of person test ability. Such assumptions can be overly-restrictive for real item response data. We propose a simple and more flexible Bayesian nonparametric IRT model…
Descriptors: Bayesian Statistics, Item Response Theory, Nonparametric Statistics, Models
Lockwood, J. R.; McCaffrey, Daniel F. – Journal of Educational and Behavioral Statistics, 2014
A common strategy for estimating treatment effects in observational studies using individual student-level data is analysis of covariance (ANCOVA) or hierarchical variants of it, in which outcomes (often standardized test scores) are regressed on pretreatment test scores, other student characteristics, and treatment group indicators. Measurement…
Descriptors: Error of Measurement, Scores, Statistical Analysis, Computation
Han, Bing; Dalal, Siddhartha R.; McCaffrey, Daniel F. – Journal of Educational and Behavioral Statistics, 2012
There is widespread interest in using various statistical inference tools as a part of the evaluations for individual teachers and schools. Evaluation systems typically involve classifying hundreds or even thousands of teachers or schools according to their estimated performance. Many current evaluations are largely based on individual estimates…
Descriptors: Statistical Inference, Error of Measurement, Classification, Statistical Analysis
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
Descriptors: Structural Equation Models, Bayesian Statistics, Statistical Inference, Statistical Distributions
Mariano, Louis T.; McCaffrey, Daniel F.; Lockwood, J. R. – Journal of Educational and Behavioral Statistics, 2010
There is an increasing interest in using longitudinal measures of student achievement to estimate individual teacher effects. Current multivariate models assume each teacher has a single effect on student outcomes that persists undiminished to all future test administrations (complete persistence [CP]) or can diminish with time but remains…
Descriptors: Persistence, Academic Achievement, Data Analysis, Teacher Influence
Choi, Kilchan; Seltzer, Michael – Journal of Educational and Behavioral Statistics, 2010
In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a period of substantive interest relate to differences in subsequent change. In this article, the authors present a fully Bayesian approach to estimating three-level Hierarchical Models in which latent…
Descriptors: Simulation, Computation, Models, Bayesian Statistics
Shin, Yongyun; Raudenbush, Stephen W. – Journal of Educational and Behavioral Statistics, 2010
In organizational studies involving multiple levels, the association between a covariate and an outcome often differs at different levels of aggregation, giving rise to widespread interest in "contextual effects models." Such models partition the regression into within- and between-cluster components. The conventional approach uses each…
Descriptors: Academic Achievement, National Surveys, Computation, Inferences
Lockwood, J. R.; McCaffrey, Daniel F.; Mariano, Louis T.; Setodji, Claude – Journal of Educational and Behavioral Statistics, 2007
There is increased interest in value-added models relying on longitudinal student-level test score data to isolate teachers' contributions to student achievement. The complex linkage of students to teachers as students progress through grades poses both substantive and computational challenges. This article introduces a multivariate Bayesian…
Descriptors: Urban Schools, Academic Persistence, Reading Achievement, Mathematics Achievement
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use