Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 18 |
Descriptor
Bayesian Statistics | 18 |
Computation | 18 |
Mathematics | 18 |
Models | 13 |
Classification | 5 |
Data Analysis | 5 |
Academic Achievement | 4 |
Artificial Intelligence | 4 |
Comparative Analysis | 4 |
Data Collection | 4 |
Evaluation Methods | 4 |
More ▼ |
Source
Author
Publication Type
Education Level
Audience
Practitioners | 1 |
Researchers | 1 |
Location
Australia | 1 |
China | 1 |
Czech Republic | 1 |
Israel | 1 |
Massachusetts | 1 |
Netherlands | 1 |
North Carolina | 1 |
Pennsylvania | 1 |
Slovakia | 1 |
Spain | 1 |
Utah | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive… | 1 |
National Longitudinal Survey… | 1 |
What Works Clearinghouse Rating
Gibson, C. Ben; Sutton, Jeannette; Vos, Sarah K.; Butts, Carter T. – Sociological Methods & Research, 2023
Microblogging sites have become important data sources for studying network dynamics and information transmission. Both areas of study, however, require accurate counts of indegree, or follower counts; unfortunately, collection of complete time series on follower counts can be limited by application programming interface constraints, system…
Descriptors: Social Networks, Network Analysis, Social Media, Mathematics
Yamaguchi, Kazuhiro; Okada, Kensuke – Journal of Educational and Behavioral Statistics, 2020
In this article, we propose a variational Bayes (VB) inference method for the deterministic input noisy AND gate model of cognitive diagnostic assessment. The proposed method, which applies the iterative algorithm for optimization, is derived based on the optimal variational posteriors of the model parameters. The proposed VB inference enables…
Descriptors: Bayesian Statistics, Statistical Inference, Cognitive Measurement, Mathematics
Aydin, Muharrem; Karal, Hasan; Nabiyev, Vasif – Education and Information Technologies, 2023
This study aims to examine adaptability for educational games in terms of adaptation elements, components used in creating user profiles, and decision algorithms used for adaptation. For this purpose, articles and full-text papers in Web of Science, Google Scholar, and Eric databases between 2000-2021 were searched using the keywords…
Descriptors: Educational Games, Game Based Learning, Programming, Physics
Gardner, Josh; Brooks, Christopher – Journal of Learning Analytics, 2018
Model evaluation -- the process of making inferences about the performance of predictive models -- is a critical component of predictive modelling research in learning analytics. We survey the state of the practice with respect to model evaluation in learning analytics, which overwhelmingly uses only naïve methods for model evaluation or…
Descriptors: Prediction, Models, Evaluation, Evaluation Methods
Mandel, Travis Scott – ProQuest LLC, 2017
When a new student comes to play an educational game, how can we determine what content to give them such that they learn as much as possible? When a frustrated customer calls in to a helpline, how can we determine what to say to best assist them? When an ill patient comes in to the clinic, how do we determine what tests to run and treatments to…
Descriptors: Reinforcement, Learning Processes, Student Evaluation, Data Collection
Martin-Fernandez, Manuel; Revuelta, Javier – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
This study compares the performance of two estimation algorithms of new usage, the Metropolis-Hastings Robins-Monro (MHRM) and the Hamiltonian MCMC (HMC), with two consolidated algorithms in the psychometric literature, the marginal likelihood via EM algorithm (MML-EM) and the Markov chain Monte Carlo (MCMC), in the estimation of multidimensional…
Descriptors: Bayesian Statistics, Item Response Theory, Models, Comparative Analysis
Martori, Francesc; Cuadros, Jordi; González-Sabaté, Lucinio – International Educational Data Mining Society, 2015
Student modeling can help guide the behavior of a cognitive tutor system and provide insight to researchers on understanding how students learn. In this context, Bayesian Knowledge Tracing (BKT) is one of the most popular knowledge inference models due to its predictive accuracy, interpretability and ability to infer student knowledge. However,…
Descriptors: Bayesian Statistics, Inferences, Prediction, Accuracy
Chiu, Chia-Yi; Köhn, Hans-Friedrich; Wu, Huey-Min – International Journal of Testing, 2016
The Reduced Reparameterized Unified Model (Reduced RUM) is a diagnostic classification model for educational assessment that has received considerable attention among psychometricians. However, the computational options for researchers and practitioners who wish to use the Reduced RUM in their work, but do not feel comfortable writing their own…
Descriptors: Educational Diagnosis, Classification, Models, Educational Assessment
Culpepper, Steven Andrew – Journal of Educational and Behavioral Statistics, 2015
A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…
Descriptors: Bayesian Statistics, Models, Sampling, Computation
Balasooriya, Uditha; Li, Jackie; Low, Chan Kee – Australian Senior Mathematics Journal, 2012
For any density function (or probability function), there always corresponds a "cumulative distribution function" (cdf). It is a well-known mathematical fact that the cdf is more general than the density function, in the sense that for a given distribution the former may exist without the existence of the latter. Nevertheless, while the…
Descriptors: Computation, Probability, Mathematics, Mathematics Curriculum
Carrillo, Rafael E. – ProQuest LLC, 2012
Compressed sensing (CS) is an emerging signal acquisition framework that goes against the traditional Nyquist sampling paradigm. CS demonstrates that a sparse, or compressible, signal can be acquired using a low rate acquisition process. Since noise is always present in practical data acquisition systems, sensing and reconstruction methods are…
Descriptors: Mathematics, Computation, Sampling, Data Collection
Lu, Zhenqiu Laura; Zhang, Zhiyong; Lubke, Gitta – Multivariate Behavioral Research, 2011
"Growth mixture models" (GMMs) with nonignorable missing data have drawn increasing attention in research communities but have not been fully studied. The goal of this article is to propose and to evaluate a Bayesian method to estimate the GMMs with latent class dependent missing data. An extended GMM is first presented in which class…
Descriptors: Bayesian Statistics, Statistical Inference, Computation, Models
DeCarlo, Lawrence T. – Applied Psychological Measurement, 2011
Cognitive diagnostic models (CDMs) attempt to uncover latent skills or attributes that examinees must possess in order to answer test items correctly. The DINA (deterministic input, noisy "and") model is a popular CDM that has been widely used. It is shown here that a logistic version of the model can easily be fit with standard software for…
Descriptors: Bayesian Statistics, Computation, Cognitive Tests, Diagnostic Tests
Sanborn, Adam N.; Griffiths, Thomas L.; Navarro, Daniel J. – Psychological Review, 2010
Rational models of cognition typically consider the abstract computational problems posed by the environment, assuming that people are capable of optimally solving those problems. This differs from more traditional formal models of cognition, which focus on the psychological processes responsible for behavior. A basic challenge for rational models…
Descriptors: Models, Cognitive Processes, Psychology, Monte Carlo Methods
Rai, Dovan; Gong, Yue; Beck, Joseph E. – International Working Group on Educational Data Mining, 2009
Student modeling is a widely used approach to make inference about a student's attributes like knowledge, learning, etc. If we wish to use these models to analyze and better understand student learning there are two problems. First, a model's ability to predict student performance is at best weakly related to the accuracy of any one of its…
Descriptors: Data Analysis, Statistical Analysis, Probability, Models
Previous Page | Next Page »
Pages: 1 | 2