NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Osler, Thomas J.; Tsay, Jeffrey – Mathematics and Computer Education, 2005
In this paper, the authors evaluate the series and integrals presented by P. Glaister. The authors show that this function has the Maclauren series expansion. The authors derive the series from the integral in two ways. The first derivation uses the technique employed by Glaister. The second derivation uses a change in variable in the integral.
Descriptors: Mathematics, Mathematics Education, Calculus, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Maruszewski, Richard F., Jr. – Mathematics and Computer Education, 2006
One of the units of in a standard differential equations course is a discussion of the oscillatory motion of a spring and the associated material on forcing functions and resonance. During the presentation on practical resonance, the instructor may tell students that it is similar to when they take their siblings to the playground and help them on…
Descriptors: Equations (Mathematics), Calculus, Mathematics Instruction, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Dana-Picard, Thierry – Mathematics and Computer Education, 2005
An integral, either definite or improper, cannot always be computed by elementary methods, such as reversed usage of differentiation formulae. Graphical properties, in particular symmetries, can be useful to compute the integral, via an auxiliary computation. We present graded examples, then prove a general result. (Contains 4 figures.)
Descriptors: Mathematics, Problem Solving, Graphs, Geometry
Peer reviewed Peer reviewed
Levine, Deborah – Mathematics and Computer Education, 1983
The Euclidean algorithm for finding the greatest common divisor is presented. (MNS)
Descriptors: Algorithms, College Mathematics, Computation, Higher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Ayoub, Ayoub B. – Mathematics and Computer Education, 2006
The sequence 1, 1, 2, 3, 5, 8, 13, 21, ..., known as Fibonacci sequence, has a long history and special importance in mathematics. This sequence came about as a solution to the famous rabbits' problem posed by Fibonacci in his landmark book, "Liber abaci" (1202). If the "n"th term of Fibonacci sequence is denoted by [f][subscript n], then it may…
Descriptors: Mathematical Concepts, History, Mathematics, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Ayoub, Ayoub B. – Mathematics and Computer Education, 2006
In the seventh century, around 650 A.D., the Indian mathematician Brahmagupta came up with a remarkable formula expressing the area E of a cyclic quadrilateral in terms of the lengths a, b, c, d of its sides. In his formula E = [square root](s-a)(s-b)(s-c)(s-d), s stands for the semiperimeter 1/2(a+b+c+d). The fact that Brahmagupta's formula is…
Descriptors: Geometric Concepts, Mathematical Formulas, Mathematics Education, Mathematics Instruction
Peer reviewed Peer reviewed
Schoaff, Eileen; Rising, Gerald – Mathematics and Computer Education, 1990
Describes examples of rational representation as a guide for translating terminology and information encountered in manuals for computers. Discusses four limitations of the representation. (YP)
Descriptors: Algorithms, Computation, Decimal Fractions, Mathematical Applications
Peer reviewed Peer reviewed
Anderson, Oliver D. – Mathematics and Computer Education, 1990
Discusses arithmetic during long-multiplications and long-division. Provides examples in decimal reciprocals for the numbers 1 through 20; connection with divisibility tests; repeating patterns; and a common fallacy on repeating decimals. (YP)
Descriptors: Arithmetic, Computation, Decimal Fractions, Division
Peer reviewed Peer reviewed
Direct linkDirect link
Ayoub, Ayoub B. – Mathematics and Computer Education, 2006
In this article, the author takes up the special trinomial (1 + x + x[squared])[superscript n] and shows that the coefficients of its expansion are entries of a Pascal-like triangle. He also shows how to calculate these entries recursively and explicitly. This article could be used in the classroom for enrichment. (Contains 1 table.)
Descriptors: Geometric Concepts, Correlation, Mathematical Formulas, Mathematics
Peer reviewed Peer reviewed
Anderson, Oliver D. – Mathematics and Computer Education, 1989
Compares two methods of approaching problem solving in quantitative disciplines. The danger of looking at answers too quickly is discussed. (YP)
Descriptors: Arithmetic, College Mathematics, Computation, Computer Software
Peer reviewed Peer reviewed
Maruszewski, Richard F., Jr. – Mathematics and Computer Education, 1990
Describes a five-dice game, horse. Discusses the offensive player's strategy using the ideas of probability, such as counting outcomes, mutually exclusive events, conditional probabilities, zero sum games, and the use of computer. (YP)
Descriptors: College Mathematics, Computation, Computer Uses in Education, Educational Games
Peer reviewed Peer reviewed
Mathews, John H. – Mathematics and Computer Education, 1989
This article illustrates that mathematical theory can be incorporated into the process to solve differential equations by a computer algebra system, muMATH. After an introduction to functions of muMATH, several short programs for enhancing the capabilities of the system are discussed. Listed are six references. (YP)
Descriptors: Calculus, College Mathematics, Computation, Computer Assisted Instruction
Peer reviewed Peer reviewed
Mathews, John H. – Mathematics and Computer Education, 1989
Described is a computer algebra system that can be used to help students understand the calculus. Provides several examples of solving calculus problems using muMATH. Lists eight references. (YP)
Descriptors: Calculus, College Mathematics, Computation, Computer Assisted Instruction