NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 12 results Save | Export
Lockwood, J. R.; Castellano, Katherine E.; Shear, Benjamin R. – Journal of Educational and Behavioral Statistics, 2018
This article proposes a flexible extension of the Fay--Herriot model for making inferences from coarsened, group-level achievement data, for example, school-level data consisting of numbers of students falling into various ordinal performance categories. The model builds on the heteroskedastic ordered probit (HETOP) framework advocated by Reardon,…
Descriptors: Bayesian Statistics, Mathematical Models, Statistical Inference, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Luo, Yong; Jiao, Hong – Educational and Psychological Measurement, 2018
Stan is a new Bayesian statistical software program that implements the powerful and efficient Hamiltonian Monte Carlo (HMC) algorithm. To date there is not a source that systematically provides Stan code for various item response theory (IRT) models. This article provides Stan code for three representative IRT models, including the…
Descriptors: Bayesian Statistics, Item Response Theory, Probability, Computer Software
Dorie, Vincent; Harada, Masataka; Carnegie, Nicole Bohme; Hill, Jennifer – Grantee Submission, 2016
When estimating causal effects, unmeasured confounding and model misspecification are both potential sources of bias. We propose a method to simultaneously address both issues in the form of a semi-parametric sensitivity analysis. In particular, our approach incorporates Bayesian Additive Regression Trees into a two-parameter sensitivity analysis…
Descriptors: Bayesian Statistics, Mathematical Models, Causal Models, Statistical Bias
Peer reviewed Peer reviewed
Wang, Xiaohui; Bradlow, Eric T.; Wainer, Howard – Applied Psychological Measurement, 2002
Proposes a modified version of commonly employed item response models in a fully Bayesian framework and obtains inferences under the model using Markov chain Monte Carlo techniques. Demonstrates use of the model in a series of simulations and with operational data from the North Carolina Test of Computer Skills and the Test of Spoken English…
Descriptors: Bayesian Statistics, Item Response Theory, Markov Processes, Mathematical Models
Levy, Roy; Mislevy, Robert J. – 2003
This paper aims to describe a Bayesian approach to modeling and estimating cognitive models both in terms of statistical machinery and actual instrument development. Such a method taps the knowledge of experts to provide initial estimates for the probabilistic relationships among the variables in a multivariate latent variable model and refines…
Descriptors: Bayesian Statistics, Cognitive Processes, Markov Processes, Mathematical Models
Peer reviewed Peer reviewed
Seltzer, Michael H. – Journal of Educational Statistics, 1993
A Bayesian approach to sensitivity of inferences to possible outliers involves recalculating marginal posterior distributions of parameters of interest under assumptions of heavy tails. This strategy is implemented in the hierarchical model setting through Gibbs sampling, a Monte Carlo technique, and illustrated through a reanalysis of data on…
Descriptors: Bayesian Statistics, Elementary Education, Equations (Mathematics), Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Segawa, Eisuke – Journal of Educational and Behavioral Statistics, 2005
Multi-indicator growth models were formulated as special three-level hierarchical generalized linear models to analyze growth of a trait latent variable measured by ordinal items. Items are nested within a time-point, and time-points are nested within subject. These models are special because they include factor analytic structure. This model can…
Descriptors: Bayesian Statistics, Mathematical Models, Factor Analysis, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Stark, Stephen; Chernyshenko, Oleksandr S.; Drasgow, Fritz – Applied Psychological Measurement, 2005
This article proposes an item response theory (IRT) approach to constructing and scoring multidimensional pairwise preference items. Individual statements are administered and calibrated using a unidimensional single-stimulus model. Tests are created by combining multidimensional items with a small number of unidimensional pairings needed to…
Descriptors: Test Construction, Scoring, Mathematical Models, Item Response Theory
Wilcox, Rand – 1977
False-positive and false-negative dicisions are the fundamental errors committed with a mastery test; yet the estimation of the likelihood of committing these errors has not been investigated. Accordingly, two methods of estimating the likelihood of committing these errors are described and then investigated using Monte Carlo techniques.…
Descriptors: Bayesian Statistics, Computer Programs, Error Patterns, Item Analysis
Peer reviewed Peer reviewed
Jansen, Margo G. H. – Journal of Educational Statistics, 1986
In this paper a Bayesian procedure is developed for the simultaneous estimation of the reading ability and difficulty parameters which are assumed to be factors in reading errors by the multiplicative Poisson Model. According to several criteria, the Bayesian estimates are better than comparable maximum likelihood estimates. (Author/JAZ)
Descriptors: Achievement Tests, Bayesian Statistics, Comparative Analysis, Difficulty Level
Peer reviewed Peer reviewed
Kim, Jwa K.; Nicewander, W. Alan – Psychometrika, 1993
Bias, standard error, and reliability of five ability estimators were evaluated using Monte Carlo estimates of the unknown conditional means and variances of the estimators. Results indicate that estimates based on Bayesian modal, expected a posteriori, and weighted likelihood estimators were reasonably unbiased with relatively small standard…
Descriptors: Ability, Bayesian Statistics, Equations (Mathematics), Error of Measurement
Kirisci, Levent; Hsu, Tse-Chi – 1992
A predictive adaptive testing (PAT) strategy was developed based on statistical predictive analysis, and its feasibility was studied by comparing PAT performance to those of the Flexilevel, Bayesian modal, and expected a posteriori (EAP) strategies in a simulated environment. The proposed adaptive test is based on the idea of using item difficulty…
Descriptors: Adaptive Testing, Bayesian Statistics, Comparative Analysis, Computer Assisted Testing