NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 60 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Dan Wei; Peida Zhan; Hongyun Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In latent growth curve modeling (LGCM), overall fit indices have garnered increased disputation for model selection, and model fit evaluation based on the mean structure has becoming popularity. The present study developed a versatile fit index, named Weighted Root Mean Squared Errors (WRMSE), based on individual case residuals (ICRs) with the aim…
Descriptors: Structural Equation Models, Goodness of Fit, Error of Measurement, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Sanghyun Hong; W. Robert Reed – Research Synthesis Methods, 2024
This study builds on the simulation framework of a recent paper by Stanley and Doucouliagos ("Research Synthesis Methods" 2023;14;515--519). S&D use simulations to make the argument that meta-analyses using partial correlation coefficients (PCCs) should employ a "suboptimal" estimator of the PCC standard error when…
Descriptors: Meta Analysis, Correlation, Weighted Scores, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Han Du; Hao Wu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Real data are unlikely to be exactly normally distributed. Ignoring non-normality will cause misleading and unreliable parameter estimates, standard error estimates, and model fit statistics. For non-normal data, researchers have proposed a distributionally-weighted least squares (DLS) estimator to combines the normal theory based generalized…
Descriptors: Least Squares Statistics, Matrices, Statistical Distributions, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Adam N. Glynn; Miguel R. Rueda; Julian Schuessler – Sociological Methods & Research, 2024
Post-instrument covariates are often included as controls in instrumental variable (IV) analyses to address a violation of the exclusion restriction. However, we show that such analyses are subject to biases unless strong assumptions hold. Using linear constant-effects models, we present asymptotic bias formulas for three estimators (with and…
Descriptors: Causal Models, Statistical Inference, Error of Measurement, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Weicong Lyu; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Data harmonization is an emerging approach to strategically combining data from multiple independent studies, enabling addressing new research questions that are not answerable by a single contributing study. A fundamental psychometric challenge for data harmonization is to create commensurate measures for the constructs of interest across…
Descriptors: Data Analysis, Test Items, Psychometrics, Item Response Theory
Dan Soriano; Eli Ben-Michael; Peter Bickel; Avi Feller; Samuel D. Pimentel – Grantee Submission, 2023
Assessing sensitivity to unmeasured confounding is an important step in observational studies, which typically estimate effects under the assumption that all confounders are measured. In this paper, we develop a sensitivity analysis framework for balancing weights estimators, an increasingly popular approach that solves an optimization problem to…
Descriptors: Statistical Analysis, Computation, Mathematical Formulas, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Wallin, Gabriel; Wiberg, Marie – Journal of Educational and Behavioral Statistics, 2023
This study explores the usefulness of covariates on equating test scores from nonequivalent test groups. The covariates are captured by an estimated propensity score, which is used as a proxy for latent ability to balance the test groups. The objective is to assess the sensitivity of the equated scores to various misspecifications in the…
Descriptors: Models, Error of Measurement, Robustness (Statistics), Equated Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Shu, Tian; Luo, Guanzhong; Luo, Zhaosheng; Yu, Xiaofeng; Guo, Xiaojun; Li, Yujun – Journal of Educational and Behavioral Statistics, 2023
Cognitive diagnosis models (CDMs) are the statistical framework for cognitive diagnostic assessment in education and psychology. They generally assume that subjects' latent attributes are dichotomous--mastery or nonmastery, which seems quite deterministic. As an alternative to dichotomous attribute mastery, attention is drawn to the use of a…
Descriptors: Cognitive Measurement, Models, Diagnostic Tests, Accuracy
Ben-Michael, Eli; Feller, Avi; Rothstein, Jesse – Grantee Submission, 2022
Staggered adoption of policies by different units at different times creates promising opportunities for observational causal inference. Estimation remains challenging, however, and common regression methods can give misleading results. A promising alternative is the synthetic control method (SCM), which finds a weighted average of control units…
Descriptors: Causal Models, Statistical Inference, Computation, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wang, Chun; Zhang, Xue – Grantee Submission, 2019
The relations among alternative parameterizations of the binary factor analysis (FA) model and two-parameter logistic (2PL) item response theory (IRT) model have been thoroughly discussed in literature (e.g., Lord & Novick, 1968; Takane & de Leeuw, 1987; McDonald, 1999; Wirth & Edwards, 2007; Kamata & Bauer, 2008). However, the…
Descriptors: Test Items, Error of Measurement, Item Response Theory, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Ippel, Lianne; Magis, David – Educational and Psychological Measurement, 2020
In dichotomous item response theory (IRT) framework, the asymptotic standard error (ASE) is the most common statistic to evaluate the precision of various ability estimators. Easy-to-use ASE formulas are readily available; however, the accuracy of some of these formulas was recently questioned and new ASE formulas were derived from a general…
Descriptors: Item Response Theory, Error of Measurement, Accuracy, Standards
Peer reviewed Peer reviewed
Direct linkDirect link
El Hadi, M.; Ouariach, A.; Essaadaoui, R.; El Moussaouy, A.; Mommadi, O. – Physics Education, 2021
In this work, we have developed an alternative device composed by an Arduino board and an INA219 sensor to experimentally obtain the mathematical formulas describing the charge and discharge of the capacitor for educational proposes. We have obtained excellent agreement between theoretical prediction and experimental measurements. The INA219 DC…
Descriptors: Physics, Science Instruction, Accuracy, Reliability
Ke, Zijun; Zhang, Zhiyong – Grantee Submission, 2018
Autocorrelation and partial autocorrelation, which provide a mathematical tool to understand repeating patterns in time series data, are often used to facilitate the identification of model orders of time series models (e.g., moving average and autoregressive models). Asymptotic methods for testing autocorrelation and partial autocorrelation such…
Descriptors: Correlation, Mathematical Formulas, Sampling, Monte Carlo Methods
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4