NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Cognitive Abilities Test1
What Works Clearinghouse Rating
Showing 1 to 15 of 38 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
J. Caleb Speirs; MacKenzie R. Stetzer; Beth A. Lindsey – Physical Review Physics Education Research, 2024
Over the course of the introductory calculus-based physics course, students are often expected to build conceptual understanding and develop and refine skills in problem solving and qualitative inferential reasoning. Many of the research-based materials developed over the past 30 years by the physics education research community use sequences of…
Descriptors: Physics, Science Education, Network Analysis, Calculus
Peer reviewed Peer reviewed
Direct linkDirect link
Christof Keebaugh; Emily Marshman; Chandralekha Singh – Physical Review Physics Education Research, 2024
We discuss an investigation of student sensemaking and reasoning in the context of degenerate perturbation theory (DPT) in quantum mechanics. We find that advanced undergraduate and graduate students in quantum physics courses often struggled with expertlike sensemaking and reasoning to solve DPT problems. The sensemaking and reasoning were…
Descriptors: Science Instruction, Quantum Mechanics, Teaching Methods, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Elina Palmgren; Tommi Kokkonen; Jesper Bruun – Physical Review Physics Education Research, 2025
Mathematics plays many roles in physics and physics education. While these roles have previously been extensively discussed in the physics education research community, no systematic picture of the multifaceted considerations has yet been formed. To gain a comprehensive overview of the previous studies on the topic, we conducted a systematic…
Descriptors: Literature Reviews, Mathematics, Physics, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Eriksson, Moa; Euler, Elias; Linder, Cedric; Eriksson, Urban; Govender, Nadaraj – African Journal of Research in Mathematics, Science and Technology Education, 2022
This article revisits and expands upon a previous phenomenographic study characterising the qualitatively different ways in which South African undergraduate physics students may experience the use of +/- signs in one-dimensional kinematics (1DK). We find the original categorisation as applicable for interpreting Swedish university-level students'…
Descriptors: Foreign Countries, Undergraduate Students, College Science, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Janet Bowers; Matthew Anderson; Kathryn Beckhard – Journal for STEM Education Research, 2024
One of the main goals of lower division "service" mathematics courses is to provide STEM-intending students with opportunities to engage in activities and contexts that can support their efforts to apply the mathematical ideas they are learning to successive major courses. The Mathematics Association of America has supported many…
Descriptors: College Faculty, Mathematics Education, Mathematics Instruction, Mathematics Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Redish, Edward F. – Physics Teacher, 2021
An important step in learning to use math in science is learning to see symbolic equations not just as calculational tools, but as ways of expressing fundamental relationships among physical quantities, of coding conceptual information, and of organizing physics knowledge structures. In this paper, I propose "anchor equations" as a…
Descriptors: Physics, Science Instruction, Teaching Methods, Equations (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Maungchang, Rasimate; Dam-O, Punsiri – Physics Education, 2021
This paper demonstrates an experimental integrated lesson of physics and calculus in a topic of fluid force applying on different shapes of dams. This lesson was designed for the first year students in engineering program in an attempt to show them the connection between these two disciplines, as well as to introduce more advanced…
Descriptors: Physics, Calculus, Science Instruction, Scientific Concepts
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Thurn, Christian; Nussbaumer, Daniela; Schumacher, Ralph; Stern, Elsbeth – Journal of Intelligence, 2022
We explored the mediating role of prior knowledge on the relation between intelligence and learning proportional reasoning. What students gain from formal instruction may depend on their intelligence, as well as on prior encounters with proportional concepts. We investigated whether a basic curriculum unit on the concept of density promoted…
Descriptors: Prior Learning, Intelligence, Training, Logical Thinking
Peer reviewed Peer reviewed
Direct linkDirect link
White Brahmia, Suzanne; Olsho, Alexis; Smith, Trevor I.; Boudreaux, Andrew; Eaton, Philip; Zimmerman, Charlotte – Physical Review Physics Education Research, 2021
One desired outcome of introductory physics instruction is that students will develop facility with reasoning quantitatively about physical phenomena. Little research has been done regarding how students develop the algebraic concepts and skills involved in reasoning productively about physics quantities, which is different from either…
Descriptors: Mathematics Skills, Thinking Skills, Physics, Science Instruction
Julian Drake Gifford – ProQuest LLC, 2021
The use and understanding of mathematics is a crucial component of the physical sciences. Much work has been done in physics education research and science education more broadly to determine persistent difficulties with mathematics. This work has led to the development of numerous problem solving strategies aimed at helping learners approach…
Descriptors: Physics, Science Instruction, Mathematics Skills, Mathematics Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Niss, Martin – Science & Education, 2018
A central goal of physics education is to teach problem-solving competency, but the description of the nature of this competency is somewhat fragmentary and implicit in the literature. The present article uses recent historical scholarship on Arnold Sommerfeld and Enrico Fermi to identify and characterize two positions on the nature of physics…
Descriptors: Physics, Problem Solving, Qualitative Research, College Science
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Brahim El Fadil; Ridha Najar – Design and Technology Education, 2024
This paper explores the integration of STEM activities in teaching and learning, emphasizing the importance of innovative pedagogical approaches in effectively introducing theoretical concepts, such as variables and functions, and merging them with practical applications. Drawing on existing literature, this study investigates the integration of…
Descriptors: STEM Education, Instructional Innovation, Learning Activities, Mathematical Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Tursucu, Süleyman; Spandaw, Jeroen; de Vries, Marc J. – Research in Science Education, 2020
Students in upper secondary education encounter difficulties in applying mathematics in physics. To improve our understanding of these difficulties, we examined symbol sense behavior of six grade 10 physics students solving algebraic physic problems. Our data confirmed that students did indeed struggle to apply algebra to physics, mainly because…
Descriptors: Physics, Secondary School Students, Science Instruction, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Kuo, Eric; Hull, Michael M.; Elby, Andrew; Gupta, Ayush – Physical Review Physics Education Research, 2020
Professional problem-solving practice in physics and engineering relies on mathematical sense making--reasoning that leverages coherence between formal mathematics and conceptual understanding. A key question for physics education is how well current instructional approaches develop students' mathematical sense making. We introduce an assessment…
Descriptors: Problem Solving, Physics, Science Instruction, Mathematical Concepts
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tejeda, Santa; Dominguez, Angeles – International Electronic Journal of Mathematics Education, 2019
Understanding a graph in pairs, in a productive way, improves the comprehension of a concept. In this research, we had 2 objectives: 1) to delve deep into the behavior of 15 pairs of remedial physics students when solving a problem with a graph of velocity, 2) to understand the interchange of personal meanings during their interactions. We posed…
Descriptors: Cooperative Learning, Problem Solving, Interaction, Graphs
Previous Page | Next Page »
Pages: 1  |  2  |  3