NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 19 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rani, Narbda; Mishra, Vinod – International Journal of Mathematical Education in Science and Technology, 2022
This paper contains interesting facts regarding the powers of odd ordered special circulant magic squares along with their magic constants. It is shown that we always obtain circulant semi-magic square and special circulant magic square in the case of even and odd positive integer powers of these magic squares respectively. These magic squares…
Descriptors: Numbers, Mathematical Logic, Mathematics Education, Mathematical Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Becker, Paul; Medwid, Mark – PRIMUS, 2021
Almost all finite groups encountered by undergraduates can be represented as multiplicative groups of concise block-diagonal binary matrices. Such representations provide simple examples for beginning a group theory course. More importantly, these representations provide concrete models for "abstract" concepts. We describe Maple lab…
Descriptors: College Mathematics, Mathematics Instruction, Undergraduate Students, Assignments
Peer reviewed Peer reviewed
Direct linkDirect link
Ndlovu, Zanele; Brijlall, Deonarain – African Journal of Research in Mathematics, Science and Technology Education, 2015
This study is part of ongoing research in undergraduate mathematics education. The study was guided by the belief that understanding the mental constructions the pre-service teachers make when learning matrix algebra concepts leads to improved instructional methods. In this preliminary study the data was collected from 85 pre-service teachers…
Descriptors: Preservice Teachers, Mathematics Instruction, Algebra, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Selinski, Natalie E.; Rasmussen, Chris; Wawro, Megan; Zandieh, Michelle – Journal for Research in Mathematics Education, 2014
The central goals of most introductory linear algebra courses are to develop students' proficiency with matrix techniques, to promote their understanding of key concepts, and to increase their ability to make connections between concepts. In this article, we present an innovative method using adjacency matrices to analyze students' interpretation…
Descriptors: Mathematics Instruction, Algebra, Mathematical Concepts, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Debnath, L. – International Journal of Mathematical Education in Science and Technology, 2014
This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…
Descriptors: Matrices, Mathematics Instruction, Mathematical Concepts, Geometry
Peer reviewed Peer reviewed
Direct linkDirect link
Dobbs, David E. – International Journal of Mathematical Education in Science and Technology, 2012
This note explains how Emil Artin's proof that row rank equals column rank for a matrix with entries in a field leads naturally to the formula for the nullity of a matrix and also to an algorithm for solving any system of linear equations in any number of variables. This material could be used in any course on matrix theory or linear algebra.
Descriptors: Matrices, Mathematics Instruction, Validity, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Ahmad, Faiz – Mathematics and Computer Education, 2011
It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…
Descriptors: Textbooks, Matrices, Mathematics Instruction, College Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Kanwar, V.; Sharma, Kapil K.; Behl, Ramandeep – International Journal of Mathematical Education in Science and Technology, 2010
In this article, we derive one-parameter family of Schroder's method based on Gupta et al.'s (K.C. Gupta, V. Kanwar, and S. Kumar, "A family of ellipse methods for solving non-linear equations", Int. J. Math. Educ. Sci. Technol. 40 (2009), pp. 571-575) family of ellipse methods for the solution of nonlinear equations. Further, we introduce new…
Descriptors: Geometric Concepts, Equations (Mathematics), Matrices, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Stewart, Sepideh; Thomas, Michael O. J. – International Journal of Mathematical Education in Science and Technology, 2010
One of the earlier, more challenging concepts in linear algebra at university is that of basis. Students are often taught procedurally how to find a basis for a subspace using matrix manipulation, but may struggle with understanding the construct of basis, making further progress harder. We believe one reason for this is because students have…
Descriptors: Mathematics Instruction, Algebra, Mathematical Concepts, College Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Radhakrishnan, R.; Choudhury, Askar – International Journal of Mathematical Education in Science and Technology, 2009
Computing the mean and covariance matrix of some multivariate distributions, in particular, multivariate normal distribution and Wishart distribution are considered in this article. It involves a matrix transformation of the normal random vector into a random vector whose components are independent normal random variables, and then integrating…
Descriptors: Computers, Multivariate Analysis, Matrices, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Barabe, Samuel; Dubeau, Franc – International Journal of Mathematical Education in Science and Technology, 2007
Synthetic division is viewed as a change of basis for polynomials written under the Newton form. Then, the transition matrices obtained from a sequence of changes of basis are used to factorize the inverse of a bidiagonal matrix or a block bidiagonal matrix.
Descriptors: Equations (Mathematics), Validity, Mathematical Logic, Arithmetic
Peer reviewed Peer reviewed
Direct linkDirect link
Elzaidi, S. M. – International Journal of Mathematical Education in Science & Technology, 2005
In this note, we give a method for finding the inverse of a three by three magic square matrix without using the usual methods for finding the inverse of a matrix. Also we give a method for finding the inverse of a three by three magic square matrix whose entries are also matrices. By using these ideas, we can construct large matrices whose…
Descriptors: Mathematical Concepts, Matrices, Mathematics Education, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Guyker, James – International Journal of Mathematical Education in Science and Technology, 2007
Characteristic polynomials are used to determine when magic squares have magic inverses. A resulting method constructs arbitrary examples of such squares.
Descriptors: Mathematics Activities, Mathematical Concepts, Validity, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Spivey, Michael – College Mathematics Journal, 2006
We use the sum property for determinants of matrices to give a three-stage proof of an identity involving Fibonacci numbers. Cassini's and d'Ocagne's Fibonacci identities are obtained at the ends of stages one and two, respectively. Catalan's Fibonacci identity is also a special case.
Descriptors: Mathematical Concepts, Matrices, College Mathematics, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Stewart, Sepideh; Thomas, Michael O. J. – International Journal of Mathematical Education in Science and Technology, 2007
Students often find their first university linear algebra experience very challenging. While coping with procedural aspects of the subject, solving linear systems and manipulating matrices, they may struggle with crucial conceptual ideas underpinning them, making it very difficult to progress in more advanced courses. This research has sought to…
Descriptors: Advanced Courses, Mathematics Instruction, College Mathematics, Mathematical Logic
Previous Page | Next Page ยป
Pages: 1  |  2