Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 1 |
| Since 2007 (last 20 years) | 1 |
Descriptor
Author
| Meredith, William | 2 |
| Duncan, Susan C. | 1 |
| Duncan, Terry E. | 1 |
| Jeffrey R. Harring | 1 |
| Ji Seung Yang | 1 |
| Li, Fuzhong | 1 |
| Millsap, Roger E. | 1 |
| Tisak, John | 1 |
| Xiaying Zheng | 1 |
Publication Type
| Journal Articles | 4 |
| Reports - Evaluative | 2 |
| Reports - Research | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Xiaying Zheng; Ji Seung Yang; Jeffrey R. Harring – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Measuring change in an educational or psychological construct over time is often achieved by repeatedly administering the same items to the same examinees over time and fitting a second-order latent growth curve model. However, latent growth modeling with full information maximum likelihood (FIML) estimation becomes computationally challenging…
Descriptors: Longitudinal Studies, Data Analysis, Item Response Theory, Structural Equation Models
Peer reviewedTisak, John; Meredith, William – Psychometrika, 1989
A longitudinal factor analysis model that is entirely exploratory is proposed for use with multiple populations. Factorial collapse, period/practice effects, and an invariant and/or stationary factor pattern are allowed. The model is formulated stochastically and implemented via a stage-wise EM algorithm. (TJH)
Descriptors: Algorithms, Factor Analysis, Longitudinal Studies, Maximum Likelihood Statistics
Peer reviewedDuncan, Terry E.; Duncan, Susan C.; Li, Fuzhong – Structural Equation Modeling, 1998
Presents an application of latent growth curve methodology to the analysis of longitudinal developmental change in alcohol consumption of 586 young adults, illustrating three approaches to the analysis of missing data: (1) multiple-sample structural equation modeling procedures; (2) raw maximum likelihood analyses; and (3) multiple modeling and…
Descriptors: Algorithms, Change, Comparative Analysis, Drinking
Peer reviewedMillsap, Roger E.; Meredith, William – Psychometrika, 1988
An extension of component analysis to longitudinal or cross-sectional data is presented. Components are derived under the restriction of invariant and/or stationary compositing weights. Multiple occasion and multiple group analyses, the computing algorithm, component pattern and structure matrices, and an example are discussed. (TJH)
Descriptors: Algorithms, Componential Analysis, Cross Sectional Studies, Longitudinal Studies

Direct link
