NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Boisselier, Lise; Ferry, Barbara; Gervais, Rémi – Learning & Memory, 2017
The hippocampal formation has been extensively described as a key component for object recognition in conjunction with place and context. The present study aimed at describing neural mechanisms in the hippocampal formation that support olfactory-tactile (OT) object discrimination in a task where space and context were not taken into account. The…
Descriptors: Animals, Role, Brain Hemisphere Functions, Olfactory Perception
Peer reviewed Peer reviewed
Direct linkDirect link
Tong, Michelle T.; Kim, Tae-Young P.; Cleland, Thomas A. – Learning & Memory, 2018
Long-term fear memory formation in the hippocampus and neocortex depends upon brain-derived neurotrophic factor (BDNF) signaling after acquisition. Incremental, appetitive odor discrimination learning is thought to depend substantially on the differentiation of adult-born neurons within the olfactory bulb (OB)--a process that is closely associated…
Descriptors: Memory, Olfactory Perception, Role, Animals
Peer reviewed Peer reviewed
Direct linkDirect link
Kleber, Jörg; Chen, Yi-Chun; Michels, Birgit; Saumweber, Timo; Schleyer, Michael; Kähne, Thilo; Buchner, Erich; Gerber, Bertram – Learning & Memory, 2016
Synapsin is an evolutionarily conserved presynaptic phosphoprotein. It is encoded by only one gene in the "Drosophila" genome and is expressed throughout the nervous system. It regulates the balance between reserve and releasable vesicles, is required to maintain transmission upon heavy demand, and is essential for proper memory function…
Descriptors: Associative Learning, Genetics, Scores, Short Term Memory
Peer reviewed Peer reviewed
Direct linkDirect link
Raccuglia, Davide; Mueller, Uli – Learning & Memory, 2013
Throughout the animal kingdom, the inhibitory neurotransmitter ?-aminobutyric acid (GABA) is a key modulator of physiological processes including learning. With respect to associative learning, the exact time in which GABA interferes with the molecular events of learning has not yet been clearly defined. To address this issue, we used two…
Descriptors: Learning Processes, Associative Learning, Olfactory Perception, Animals
Peer reviewed Peer reviewed
Direct linkDirect link
Sekiguchi, Tatsuhiko; Furudate, Hiroyuki; Kimura, Tetsuya – Learning & Memory, 2010
The terrestrial slug "Limax" exhibits a highly developed ability to learn odors with a small nervous system. When a fluorescent dye, Lucifer Yellow (LY), is injected into the slug's body cavity after odor-taste associative conditioning, a group of neurons in the procerebral (PC) lobe, an olfactory center of the slug, is labeled by LY. We examined…
Descriptors: Conditioning, Olfactory Perception, Physiology, Brain Hemisphere Functions
Peer reviewed Peer reviewed
Direct linkDirect link
Roitman, Mitchell F.; Wheeler, Robert A.; Tiesinga, Paul H. E.; Roitman, Jamie D.; Carelli, Regina M. – Learning & Memory, 2010
The nucleus accumbens (NAc) plays a role in hedonic reactivity to taste stimuli. Learning can alter the hedonic valence of a given stimulus, and it remains unclear how the NAc encodes this shift. The present study examined whether the population response of NAc neurons to a taste stimulus is plastic using a conditioned taste aversion (CTA)…
Descriptors: Conditioning, Rewards, Brain Hemisphere Functions, Role
Peer reviewed Peer reviewed
Direct linkDirect link
Zucco, Gesualdo M.; Paolini, Michela; Schaal, Benoist – Learning and Motivation, 2009
The pioneering work by Kirk-Smith, Van Toller, and Dodd [Kirk-Smith, M. D., Van Toller, C., & Dodd, G. H. (1983). "Unconscious odour conditioning in human subjects." "Biological Psychology," 17, 221-231], established that an unnoticed odorant paired with an emotionally meaningful task can influence mood and attitudes when the odorant alone is…
Descriptors: Conditioning, Learning Processes, Research Methodology, Experiments