Publication Date
| In 2026 | 0 |
| Since 2025 | 6 |
| Since 2022 (last 5 years) | 77 |
| Since 2017 (last 10 years) | 146 |
| Since 2007 (last 20 years) | 148 |
Descriptor
| Learning Analytics | 148 |
| Student Behavior | 148 |
| Foreign Countries | 54 |
| Electronic Learning | 43 |
| Academic Achievement | 36 |
| College Students | 30 |
| Prediction | 30 |
| Learner Engagement | 28 |
| Online Courses | 28 |
| Behavior Patterns | 26 |
| Undergraduate Students | 25 |
| More ▼ | |
Source
Author
Publication Type
Education Level
Audience
| Students | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Motivated Strategies for… | 2 |
| ACT Assessment | 1 |
| International English… | 1 |
| National Assessment of… | 1 |
What Works Clearinghouse Rating
Integrating Gaze Data and Digital Textbook Reading Logs for Enhanced Analysis of Learning Activities
Ken Goto; Li Chen; Tsubasa Minematsu; Atsushi Shimada – International Association for Development of the Information Society, 2024
Learning logs collected by digital educational systems, increasingly deployed in educational settings, include clickstream logs recorded through page transitions in teaching materials and digital marker logs recorded by drawing a marker. A challenge with these learning logs is their low temporal and spatial resolutions. This paper proposes a…
Descriptors: Eye Movements, Educational Technology, Textbooks, Learning Activities
Nina Bergdahl; Melissa Bond; Jeanette Sjöberg; Mark Dougherty; Emily Oxley – International Journal of Educational Technology in Higher Education, 2024
Educational outcomes are heavily reliant on student engagement, yet this concept is complex and subject to diverse interpretations. The intricacy of the issue arises from the broad spectrum of interpretations, each contributing to the understanding of student engagement as both complex and multifaceted. Given the emergence and increasing use of…
Descriptors: Learner Engagement, College Students, Student Behavior, Educational Technology
Wannapon Suraworachet; Qi Zhou; Mutlu Cukurova – Journal of Computer Assisted Learning, 2025
Background: Many researchers work on the design and development of multimodal collaboration support systems with AI, yet very few of these systems are mature enough to provide actionable feedback to students in real-world settings. Therefore, a notable gap exists in the literature regarding students' perceptions of such systems and the feedback…
Descriptors: Graduate Students, Student Attitudes, Artificial Intelligence, Cooperative Learning
Halim Acosta; Seung Lee; Daeun Hong; Wookhee Min; Bradford Mott; Cindy Hmelo-Silver; James Lester – International Educational Data Mining Society, 2025
Understanding the relationship between student behaviors and learning outcomes is crucial for designing effective collaborative learning environments. However, collaborative learning analytics poses significant challenges, not only due to the complex interplay between collaborative problem-solving and collaborative dialogue but also due to the…
Descriptors: Learning Analytics, Cooperative Learning, Student Behavior, Prediction
Yeonji Jung – ProQuest LLC, 2023
Actionability is a critical issue in learning analytics for driving impact in learning, bridging the gap between insights and improvement. This dissertation places actionability at the forefront, integrating it throughout the learning analytics process to fully leverage its potential. The study involves designing, developing, and implementing…
Descriptors: Learning Analytics, Design, Cooperative Learning, Documentation
Önder, Asuman; Akçapinar, Gökhan – Education and Information Technologies, 2023
The effective use of self-regulation strategies has been considered significant in online learning environments. It is known that learners must be supported in this context. Academic help-seeking (AHS), as one of the main self-regulated learning strategies, is associated with academic success. However, learners may avoid seeking help for…
Descriptors: Students, Help Seeking, Student Behavior, Learning Analytics
Xia, Xiaona; Qi, Wanxue – International Journal of Educational Technology in Higher Education, 2023
The temporal sequence of learning behavior is multidimensional and continuous in MOOCs. On the one hand, it supports personalized learning methods, achieves flexible time and space. On the other hand, it also makes MOOCs produce a large number of dropouts and incomplete learning behaviors. Dropout prediction and decision feedback have become an…
Descriptors: MOOCs, Dropouts, Prediction, Decision Making
Priya Harindranathan; James Folkestad; Jemshid K. – Journal of Educational Technology, 2025
Due to the use of online learning platforms and learning management systems, students are now working unsupervised on quiz-taking platforms. These unsupervised online forms of assessment are replacing traditional supervised quizzes in conventional classrooms. It is unclear whether the quiz-taking behaviors of students in these settings align with…
Descriptors: Undergraduate Students, Microbiology, Science Education, Computer Assisted Testing
Khajonmote, Withamon; Chinsook, Kittipong; Klintawon, Sununta; Sakulthai, Chaiyan; Leamsakul, Wicha; Jansawang, Natchanok; Jantakoon, Thada – Journal of Education and Learning, 2022
The system architecture of big data in massive open online courses (BD-MOOCs System Architecture) is composed of six components. The first component was comprised of big data tools and technologies such as Hadoop, YARN, HDFS, Spark, Hive, Sqoop, and Flume. The second component was educational data science, which is composed of the following four…
Descriptors: MOOCs, Data Collection, Student Behavior, Computer Software
Esteban Villalobos; Isabel Hilliger; Carlos Gonzalez; Sergio Celis; Mar Pérez-Sanagustín; Julien Broisin – Journal of Learning Analytics, 2024
Researchers in learning analytics have created indicators with learners' trace data as a proxy for studying learner behaviour in a college course. Student Approaches to Learning (SAL) is one of the theories used to explain these behaviours, distinguishing between deep, surface, and organized study. In Latin America, researchers have demonstrated…
Descriptors: Learning Analytics, Academic Achievement, Role Theory, Learning Processes
Elissavet Papageorgiou; Jacqueline Wong; Mohammad Khalil; Annoesjka J. Cabo – Journal of Learning Analytics, 2025
Behavioural engagement as a predictor of academic success hinges on the interplay between effort and time. Exploring the longitudinal development of engagement is vital for understanding adaptations in learning behaviour and informing educational interventions. However, person-oriented longitudinal studies on student engagement are scarce.…
Descriptors: Learner Engagement, Student Behavior, Electronic Learning, Web Based Instruction
Yang, Christopher C. Y.; Ogata, Hiroaki – Education and Information Technologies, 2023
The application of student interaction data is a promising field for blended learning (BL), which combines conventional face-to-face and online learning activities. However, the application of online learning technologies in BL settings is particularly challenging for students with lower self-regulatory abilities. In this study, a personalized…
Descriptors: Individualized Instruction, Learning Analytics, Intervention, Academic Achievement
Brown, Alice; Lawrence, Jill; Basson, Marita; Axelsen, Megan; Redmond, Petrea; Turner, Joanna; Maloney, Suzanne; Galligan, Linda – Active Learning in Higher Education, 2023
Combining nudge theory with learning analytics, 'nudge analytics', is a relatively recent phenomenon in the educational context. Used, for example, to address such issues as concerns with student (dis)engagement, nudging students to take certain action or to change a behaviour towards active learning, can make a difference. However, knowing who to…
Descriptors: Online Courses, Learner Engagement, Learning Analytics, Intervention
Biedermann, Daniel; Ciordas-Hertel, George-Petru; Winter, Marc; Mordel, Julia; Drachsler, Hendrik – Journal of Learning Analytics, 2023
Learners use digital media during learning for a variety of reasons. Sometimes media use can be considered "on-task," e.g., to perform research or to collaborate with peers. In other cases, media use is "off-task," meaning that learners use content unrelated to their current learning task. Given the well-known problems with…
Descriptors: Learning Processes, Learning Analytics, Information Technology, Behavior Patterns
Hu, Yung-Hsiang – Education and Information Technologies, 2022
The research presents precision education that aims to regulate students' behaviors through the learning analytics dashboard (LAD) in the AI-supported smart learning environment (SLE). The LAD basically tracks and visualizes traces of learning actions to make students aware of their learning behaviors and reflect these against the agreed goals.…
Descriptors: Precision Teaching, Artificial Intelligence, Educational Environment, Student Behavior

Peer reviewed
Direct link
