NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Grantee Submission56
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 56 results Save | Export
Peer reviewed Peer reviewed
Parian Haghighat; Denisa Gandara; Lulu Kang; Hadis Anahideh – Grantee Submission, 2024
Predictive analytics is widely used in various domains, including education, to inform decision-making and improve outcomes. However, many predictive models are proprietary and inaccessible for evaluation or modification by researchers and practitioners, limiting their accountability and ethical design. Moreover, predictive models are often opaque…
Descriptors: Prediction, Learning Analytics, Multivariate Analysis, Regression (Statistics)
Laura K. Allen; Sarah C. Creer; Püren Öncel – Grantee Submission, 2022
As educators turn to technology to supplement classroom instruction, the integration of natural language processing (NLP) into educational technologies is vital for increasing student success. NLP involves the use of computers to analyze and respond to human language, including students' responses to a variety of assignments and tasks. While NLP…
Descriptors: Natural Language Processing, Learning Analytics, Learning Processes, Methods
Li, Chenglu; Xing, Wanli; Leite, Walter – Grantee Submission, 2021
To support online learners at a large scale, extensive studies have adopted machine learning (ML) techniques to analyze students' artifacts and predict their learning outcomes automatically. However, limited attention has been paid to the fairness of prediction with ML in educational settings. This study intends to fill the gap by introducing a…
Descriptors: Learning Analytics, Prediction, Models, Electronic Learning
Peer reviewed Peer reviewed
Conrad Borchers; Jeroen Ooge; Cindy Peng; Vincent Aleven – Grantee Submission, 2025
Personalized problem selection enhances student practice in tutoring systems. Prior research has focused on transparent problem selection that supports learner control but rarely engages learners in selecting practice materials. We explored how different levels of control (i.e., full AI control, shared control, and full learner control), combined…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Learner Controlled Instruction, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Dragos-Georgian Corlatescu; Micah Watanabe; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Modeling reading comprehension processes is a critical task for Learning Analytics, as accurate models of the reading process can be used to match students to texts, identify appropriate interventions, and predict learning outcomes. This paper introduces an improved version of the Automated Model of Comprehension, namely version 4.0. AMoC has its…
Descriptors: Computer Software, Artificial Intelligence, Learning Analytics, Natural Language Processing
Ionita, Remus Florentin; Dascalu, Mihai; Corlatescu, Dragos-Georgian; McNamara, Danielle S – Grantee Submission, 2021
Exploring new or emerging research domains or subdomains can become overwhelming due to the magnitude of available resources and the high speed at which articles are published. As such, a tool that curates the information and underlines central entities, both authors and articles from a given research context, is highly desirable. Starting from…
Descriptors: Prediction, Learning Analytics, Authors, Network Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Esther Ulitzsch; Qiwei He; Steffi Pohl – Grantee Submission, 2024
This is an editorial for a special issue "Innovations in Exploring Sequential Process Data" in the journal Zeitschrift für Psychologie. Process data refer to log files generated by human-computer interactive items. They document the entire process, including keystrokes, mouse clicks as well as the associated time stamps, performed by a…
Descriptors: Educational Innovation, Man Machine Systems, Educational Technology, Computer Assisted Testing
Ethan Prihar; Adam Sales; Neil Heffernan – Grantee Submission, 2023
This work proposes Dynamic Linear Epsilon-Greedy, a novel contextual multi-armed bandit algorithm that can adaptively assign personalized content to users while enabling unbiased statistical analysis. Traditional A/B testing and reinforcement learning approaches have trade-offs between empirical investigation and maximal impact on users. Our…
Descriptors: Trust (Psychology), Learning Management Systems, Learning Processes, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Emma R. Dear; Bryce D. McLeod; Nicole M. Peterson; Kevin S. Sutherland; Michael D. Broda; Alex R. Dopp; Aaron R. Lyon – Grantee Submission, 2024
Introduction: Due to usability, feasibility, and acceptability concerns, observational treatment fidelity measures are often challenging to deploy in schools. Teacher self-report fidelity measures with specific design features might address some of these barriers. This case study outlines a community-engaged, iterative process to adapt the…
Descriptors: Measures (Individuals), Data Collection, Observation, Learning Analytics
Peer reviewed Peer reviewed
Devika Venugopalan; Ziwen Yan; Conrad Borchers; Jionghao Lin; Vincent Aleven – Grantee Submission, 2025
Caregivers (i.e., parents and members of a child's caring community) are underappreciated stakeholders in learning analytics. Although caregiver involvement can enhance student academic outcomes, many obstacles hinder involvement, most notably knowledge gaps with respect to modern school curricula. An emerging topic of interest in learning…
Descriptors: Homework, Computational Linguistics, Teaching Methods, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tong Li; Sarah D. Creer; Tracy Arner; Rod D. Roscoe; Laura K. Allen; Danielle S. McNamara – Grantee Submission, 2022
Automated writing evaluation (AWE) tools can facilitate teachers' analysis of and feedback on students' writing. However, increasing evidence indicates that writing instructors experience challenges in implementing AWE tools successfully. For this reason, our development of the Writing Analytics Tool (WAT) has employed a participatory approach…
Descriptors: Automation, Writing Evaluation, Learning Analytics, Participatory Research
Peer reviewed Peer reviewed
Direct linkDirect link
Burhan Ogut; Blue Webb; Juanita Hicks; Ruhan Circi; Michelle Yin – Grantee Submission, 2024
In this study, we explore the application of process mining techniques on assessment log data to explore problem-solving strategies in Algebra. By analyzing sequences of student activities, we demonstrate the significant potential of process mining in identifying problem-solving strategies that lead to successful and unsuccessful outcomes. Our…
Descriptors: Mathematics Skills, Problem Solving, Learning Analytics, Algebra
Peer reviewed Peer reviewed
Direct linkDirect link
Yanping Pei; Adam Sales; Johann Gagnon-Bartsch – Grantee Submission, 2024
Randomized A/B tests within online learning platforms enable us to draw unbiased causal estimators. However, precise estimates of treatment effects can be challenging due to minimal participation, resulting in underpowered A/B tests. Recent advancements indicate that leveraging auxiliary information from detailed logs and employing design-based…
Descriptors: Randomized Controlled Trials, Learning Management Systems, Causal Models, Learning Analytics
Kirk P. Vanacore; Ji-Eun Lee; Alena Egorova; Erin Ottmar – Grantee Submission, 2023
To meet the goal of understanding students' complex learning processes and maximizing their learning outcomes, the field of learning analytics delves into the myriad of data captured as students use computer assisted learning platforms. Although many platforms associated with learning analytics focus on students' performance, performance on…
Descriptors: Learning Analytics, Outcomes of Education, Problem Solving, Learning Processes
Jionghao Lin; Shaveen Singh; Lela Sha; Wei Tan; David Lang; Dragan Gasevic; Guanliang Chen – Grantee Submission, 2022
To construct dialogue-based Intelligent Tutoring Systems (ITS) with sufficient pedagogical expertise, a trendy research method is to mine large-scale data collected by existing dialogue-based ITS or generated between human tutors and students to discover effective tutoring strategies. However, most of the existing research has mainly focused on…
Descriptors: Intelligent Tutoring Systems, Teaching Methods, Dialogs (Language), Man Machine Systems
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4