NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Jinhui – Physics Teacher, 2020
The distant magnetic field of a magnetic dipole is usually derived via the magnetic vector potential and substantial vector calculus. This paper presents an alternate proof that is less mathematically intensive, and that ties together various problem-solving tricks (the principle of virtual work, observation that only instantaneous quantities…
Descriptors: Physics, Magnets, Calculus, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Thomas, Joshua D.; Lee, Scott A.; Cooley, Max; Irving, Richard E. – Physics Teacher, 2020
Igniting excitement for physics in our students is a goal of every instructor. In this paper, we discuss a unique example of the concept of density, a subject that is rarely viewed as intriguing by students. By combining a problem involving dinosaurs and an effective density, our students' interest is often captured through calculating an…
Descriptors: Physics, Science Instruction, Teaching Methods, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Keller, Philip – Physics Teacher, 2019
Before students learn Kirchhoff's rules, they are typically taught how to solve "combined series-parallel" circuits. The method presented in many textbooks begins by drawing a series of simplified circuits, replacing series and/or parallel elements with their equivalent resistances, eventually reducing the circuit to a voltage source and…
Descriptors: Physics, Equipment, Energy, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Frank, Brian W. – Physics Teacher, 2018
The goal of this paper is to illustrate different ways that cardsorting activities (or "card stacks") can be implemented in the introductory physics classroom, along with various tips and resources for getting started. My first attempt at developing a card stack came about from simply wanting to try out a fun way to change student…
Descriptors: Task Analysis, Problem Sets, Introductory Courses, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Prentice, A.; Fatuzzo, M.; Toepker, T. – Physics Teacher, 2015
By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.
Descriptors: Magnets, Motion, Physics, Learning Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Gaffney, Jon D. H.; Whitaker, Jacob T. – Physics Teacher, 2015
Instructors of physics courses face the demanding challenge of creating a safe, nurturing community in their classroom while maintaining sufficient rigor. First-day activities are especially important, because they need to both motivate their students and prepare them for the course. Experienced instructors happily share their successful first-day…
Descriptors: Science Instruction, Science Teachers, Physics, Science Activities
Peer reviewed Peer reviewed
Evans, Howard E. II – Physics Teacher, 1991
An exercise which relates particle scattering and the calculation of cross-sections to answer the following question--"Do you get wetter by walking or running through the rain?"--is described. The calculations used to answer the question are provided. (KR)
Descriptors: Geometry, Graphs, Learning Activities, Physics
Peer reviewed Peer reviewed
Mills, David S.; Huston, Craig S. – Physics Teacher, 1991
An exercise that gives students a chance to use the equations of state for both an ideal gas and for an adiabatic process in determining the points at which heat flow reverses direction and at which the working substance reaches its maximum temperature is demonstrated. (KR)
Descriptors: Calculus, Higher Education, Learning Activities, Physical Chemistry
Peer reviewed Peer reviewed
Van Heuvelen, Alan; Allen, Leith; Mihas, Pavlos – Physics Teacher, 1999
Gives several sample experiment problems for electricity and magnetism. To solve an experiment problem, students have to do one or more of the following: clarify a poorly defined problem, divide a problem into parts, access the appropriate concept needed to solve each problem part, decide whether approximations are appropriate, design an…
Descriptors: Electricity, Experiments, Higher Education, Learning Activities
Peer reviewed Peer reviewed
Craig, T. W.; Kiang, D. – Physics Teacher, 1991
Presents a problem to determine conditions under which two identical masses, constrained to move along two perpendicular wires, would collide when positioned on the wires and released with no initial velocity. Offers a solution that utilizes the position of the center of mass and a computer simulation of the phenomenon. (MDH)
Descriptors: Computer Simulation, Enrichment Activities, Force, Geometry
Peer reviewed Peer reviewed
Esbenshade, Donald H., Jr. – Physics Teacher, 1991
Develops the idea of fractals through a laboratory activity that calculates the fractal dimension of ordinary white bread. Extends use of the fractal dimension to compare other complex structures as other breads and sponges. (MDH)
Descriptors: Computation, Enrichment Activities, Fractals, High Schools
Peer reviewed Peer reviewed
Halada, Richard S. – Physics Teacher, 1991
Demonstrates a laboratory to teach the concept of moment of inertia in which students are asked to identify four objects of equal mass sealed in unopenable containers by identifying the mass distribution of each object. Gives instructions to build an instrument to determine relative distribution of mass. (MDH)
Descriptors: Concept Formation, Cooperative Learning, High Schools, Instructional Materials