NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ratanavis, Amarin – Physics Education, 2022
A single-slit diffraction experiment in an introductory physics laboratory is generally comprised of a rectangular slit and a laser source. The laser beam is sent to the slit producing the well-known diffraction pattern on the screen. This paper proposes a simple modification of the single-slit diffraction experiment to increase student attention…
Descriptors: Science Instruction, Science Laboratories, Physics, Lasers
Peer reviewed Peer reviewed
Direct linkDirect link
Silverstein, Todd P.; Williamson, J. Charles – Biochemistry and Molecular Biology Education, 2019
We have developed a laboratory project in which students prepare liposomes, expose them to hyperosmotic and hypoosmotic solutions, and follow the resulting shrinking and swelling (respectively) with laser light scattering. Each light intensity transient can be fit to an exponential decline or rise, with the decay constant (k) and the amplitude…
Descriptors: Science Laboratories, Science Instruction, Scientific Concepts, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Onorato, Pasquale; Gratton, Luigi; Malgieri, Massimiliano; Oss, Stefano – Physics Education, 2017
The lifetimes of the photoluminescent compounds contained in the coating of fluorescent compact lamps are usually measured using specialised instruments, including pulsed lasers and/or spectrofluorometers. Here we discuss how some low cost apparatuses, based on the use of either sensors for the educational lab or commercial digital photo cameras,…
Descriptors: Science Instruction, Light, Physics, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Mowry, Curtis; Milofsky, Rob; Collins, William; Pimentel, Adam S. – Journal of Chemical Education, 2017
This laboratory introduces students to laser-induced breakdown spectroscopy (LIBS) for the analysis of metals in soil and rock samples. LIBS employs a laser-initiated spark to induce electronic excitation of metal atoms. Ensuing atomic emission allows for qualitative and semiquantitative analysis. The students use LIBS to analyze a series of…
Descriptors: Spectroscopy, Metallurgy, Qualitative Research, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Chinni, Rosemarie C. – Journal of Chemical Education, 2012
This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…
Descriptors: Chemistry, Spectroscopy, Lasers, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Zorba, Serkan; Farah, Constantine; Pant, Ravi – European Journal of Physics, 2010
An advanced undergraduate laboratory experiment is outlined which uses a dye laser to map out the chromatic dispersion curve of a polymethyl methacrylate (PMMA) optical fibre. Seven different wavelengths across the visible spectrum are employed using five different dyes. The light pulse is split into two pulses, one to a nearby photodetector and…
Descriptors: Lasers, Laboratory Experiments, Science Instruction, College Science