NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 26 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Matthew D. Hanson; Daniel P. Miller; Cholavardhan Kondeti; Adam Brown; Eva Zurek; Scott Simpson – Journal of Chemical Education, 2023
In this article, we describe a fully computational laboratory exercise that results in an increase of students' understanding of what quantum chemical geometry optimization calculations are doing to find minimum energy structures. This laboratory exercise was conducted several times over multiple years at a small private undergraduate institution,…
Descriptors: Undergraduate Students, Geometry, Chemistry, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Miller, Daniel P.; Phillips, Adam; Ludowieg, Herbert; Swihart, Sarah; Autschbach, Jochen; Zurek, Eva – Journal of Chemical Education, 2019
A computational laboratory experiment investigating molecular models for hexagonal boron-carbon-nitrogen sheets (h-BCN) was developed and employed in an upper-level undergraduate chemistry course. Students used the Avogadro user interface for molecular editing and the WebMO interface for the quantum computational workflow. Density functional…
Descriptors: Computer Uses in Education, Laboratory Experiments, Science Experiments, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Schuster, Mariah L.; Peterson, Karl P.; Stoffregen, Stacey A. – Journal of Chemical Education, 2018
This two-period undergraduate laboratory experiment involves the synthesis of a mixture of isomeric unknowns, isolation of the mixture by means of distillation, and characterization of the two products primarily by NMR spectroscopy (1D and 2D) supported with IR spectroscopy and GC-MS techniques. Subsequent calculation and examination of the…
Descriptors: Science Instruction, College Science, Undergraduate Study, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Eckler, Logan H.; Nee, Matthew J. – Journal of Chemical Education, 2016
A simple molecular dynamics experiment is described to demonstrate transport properties for the undergraduate physical chemistry laboratory. The AMBER package is used to monitor self-diffusion in "n"-hexane. Scripts (available in the Supporting Information) make the process considerably easier for students, allowing them to focus on the…
Descriptors: Molecular Structure, Computation, Measurement Techniques, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Peterson, Karen I.; Pullman, David P. – Journal of Chemical Education, 2016
A laboratory project for the upper-division physical chemistry laboratory is described, and it combines IR and Raman spectroscopies with Gaussian electronic structure calculations to determine the structure of the oxalate anion in solid alkali oxalates and in aqueous solution. The oxalate anion has two limiting structures whose vibrational spectra…
Descriptors: Science Instruction, Chemistry, Spectroscopy, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Esselman, Brian J.; Hill, Nicholas J. – Journal of Chemical Education, 2016
Advances in software and hardware have promoted the use of computational chemistry in all branches of chemical research to probe important chemical concepts and to support experimentation. Consequently, it has become imperative that students in the modern undergraduate curriculum become adept at performing simple calculations using computational…
Descriptors: Science Instruction, Undergraduate Study, College Science, Organic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen – Journal of Chemical Education, 2014
A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…
Descriptors: Science Instruction, College Science, Undergraduate Study, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Hii, King Kuok; Rzepa, Henry S.; Smith, Edward H. – Journal of Chemical Education, 2015
The coupling of a student experiment involving the preparation and use of a catalyst for the asymmetric epoxidation of an alkene with computational simulations of various properties of the resulting epoxide is set out in the form of a software toolbox from which students select appropriate components. At the core of these are the computational…
Descriptors: Organic Chemistry, Laboratory Experiments, Science Experiments, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Castet, Frédéric; Méreau, Raphaël; Liotard, Daniel – Journal of Chemical Education, 2014
In this computational experiment, students use advanced quantum chemistry tools to simulate the photochromic reaction mechanism in naphthopyran derivatives. The first part aims to make students familiar with excited-state reaction mechanisms and addresses the photoisomerization of the benzopyran molecule by means of semiempirical quantum chemical…
Descriptors: Science Instruction, College Science, Chemistry, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Albrecht, Birgit – Journal of Chemical Education, 2014
The Wittig reaction is one of the most useful reactions in organic chemistry. Despite its prominence early in the organic chemistry curriculum, the exact mechanism of this reaction is still under debate, and this controversy is often neglected in the classroom. Introducing a simple computational study of the Wittig reaction illustrates the…
Descriptors: Undergraduate Students, Laboratory Experiments, Computation, Organic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Gaynor, James D.; Wetterer, Anna M.; Cochran, Rea M.; Valente, Edward J.; Mayer, Steven G. – Journal of Chemical Education, 2015
Raman spectroscopy is a powerful experimental technique, yet it is often missing from the undergraduate physical chemistry laboratory curriculum. Tetrachloromethane (CCl[subscript 4]) is the ideal molecule for an introductory vibrational spectroscopy experiment and the symmetric stretch vibration contains fine structure due to isotopic variations…
Descriptors: Spectroscopy, Prediction, Chemistry, Laboratory Experiments
Joseph M. Hayes – Journal of Chemical Education, 2014
A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…
Descriptors: Visualization, Models, Visual Aids, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Montgomery, Craig D. – Journal of Chemical Education, 2013
An undergraduate exercise in computational chemistry that investigates the energy barrier for pyramidal inversion of amines and phosphines is presented. Semiempirical calculations (PM3) of the ground-state and transition-state energies for NR[superscript 1]R[superscript 2]R[superscript 3] and PR[superscript 1]R[superscript 2]R[superscript 3] allow…
Descriptors: Science Instruction, Chemistry, Energy, Barriers
Peer reviewed Peer reviewed
Direct linkDirect link
Nassabeh, Nahal; Tran, Mark; Fleming, Patrick E. – Journal of Chemical Education, 2014
A set of exercises for use in a typical physical chemistry laboratory course are described, modeling the unimolecular dissociation of the ethyl radical to form ethylene and atomic hydrogen. Students analyze the computational results both qualitatively and quantitatively. Qualitative structural changes are compared to approximate predicted values…
Descriptors: Science Instruction, Computation, Chemistry, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Fedor, Anna M.; Toda, Megan J. – Journal of Chemical Education, 2014
The hydrogen bonding of phenol can be used as an introductory model for biological systems because of its structural similarities to tyrosine, a para-substituted phenol that is an amino acid essential to the synthesis of proteins. Phenol is able to form hydrogen bonds readily in solution, which makes it a suitable model for biological…
Descriptors: Spectroscopy, Chemistry, Science Education, Investigations
Previous Page | Next Page »
Pages: 1  |  2