NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Test of Logical Thinking1
What Works Clearinghouse Rating
Showing 1 to 15 of 57 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sofie Ye; Maja Elmgren; Magnus Jacobsson; Felix M. Ho – Chemistry Education Research and Practice, 2024
Problem solving in chemical kinetics poses substantial challenges for university students since it often involves significant use of mathematics as a tool and language, with challenging translations and transitions between chemical phenomena and mathematical representations. In this paper, we present key findings from a study investigating…
Descriptors: Problem Solving, Chemistry, Kinetics, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Wong, Kin Son; Wong, Hang – Physics Teacher, 2022
The law of conservation of momentum is a fundamental law of nature. It states that the momentum of an isolated system is conserved. In high school or introductory-level physics courses, for simplicity, teachers and textbooks always use collisions in one dimension as the examples to introduce the concept of conservation of momentum. To solve simple…
Descriptors: Scientific Principles, Kinetics, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Habiddin, Habiddin; Page, Elizabeth Mary – International Journal of Science and Mathematics Education, 2021
The published study of Nurrenbern and Pickering in 1987 raises awareness among chemistry educators that students' success in answering numerical questions does not necessarily reflect their degree of understanding of the related chemical concepts. Efforts have been made to provide more opportunities for students to improve their ability in…
Descriptors: Problem Solving, Mathematics Skills, Chemistry, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Karch, Jessica M.; Sevian, Hannah – Chemistry Education Research and Practice, 2022
Productive problem solving, concept construction, and sense making occur through the core process of abstraction. Although the capacity for domain-general abstraction is developed at a young age, the role of abstraction in increasingly complex and disciplinary environments, such as those encountered in undergraduate STEM education, is not well…
Descriptors: Organic Chemistry, Problem Solving, Undergraduate Students, Thermodynamics
Peer reviewed Peer reviewed
Direct linkDirect link
Rossman, Taylor A.; Parks, Zachary P.; Messina, Michael – Journal of Chemical Education, 2020
We present an algorithm for solving the time-dependent Schrödinger equation that is based on the finite-difference expression of the kinetic energy operator. Students who have some knowledge of linear algebra can understand the theory used to derive the algorithm. This is because the finite-difference kinetic energy matrix and the Hückel matrix…
Descriptors: Mathematics, Equations (Mathematics), Problem Solving, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Tong, Dazhen; Liu, Jia; Sun, Yechao; Liu, Qiaoyi; Zhang, Xiangqun; Pan, Sudong; Bao, Lei – Physical Review Physics Education Research, 2023
Work and mechanical energy is a fundamental topic in introductory physics. Studies in existing literature have shown that students have difficulties in understanding work and mechanical energy, particularly the topic of work-energy theorem. To study students' knowledge integration in learning work and mechanical energy, a conceptual framework…
Descriptors: Student Evaluation, Physics, Science Instruction, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Rodriguez, Jon-Marc G.; Stricker, Avery R.; Becker, Nicole M. – Journal of Chemical Education, 2020
Chemical kinetics is an important topic that is reinforced across the undergraduate chemistry curriculum, but previous research indicates students tend to have difficulty developing a sophisticated understanding of reaction rate. In this qualitative case study, we characterized how two students conceptualized reaction rate in the context of…
Descriptors: Science Instruction, Chemistry, Kinetics, Undergraduate Study
Obaya Valdivia, Adolfo E.; Osornio, Carlos Montaño; Vargas-Rodríguez, Yolanda Marina – Online Submission, 2021
In the resolution of problems in chemical kinetics and catalysis the mathematical models relate the independent variable that is usually time, with the dependent variable which is normally the concentration of a reactant. They conform to linear models, whose parameters such as the ordering to origin and the slope are kinetic parameters, applying…
Descriptors: Problem Based Learning, Problem Solving, Chemistry, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Geske, Matthew – Physics Teacher, 2019
Many introductory physics courses begin with the teaching of motion and kinematics. This naturally leads to the use of constant acceleration equations to solve various problems involving common motions (free fall being a notable example). Students can sometimes get the impression that these equations are the only thing they need to remember in…
Descriptors: Physics, Science Instruction, Scientific Concepts, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Barrera, Luis A.; Alma C. Escobosa; Alsaihati, Laila S.; Noveron, Juan C. – Journal of Chemical Education, 2019
Herein we present a modified iodine clock experiment which replaces starch with cellulose paper. This provides the reaction with a white solid surface in which color change can be clearly observed and reduces reagent amounts required to 540 µL per group. After data acquisition, students are required to calculate reaction orders and the reaction…
Descriptors: Science Experiments, Chemistry, Kinetics, Science Laboratories
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sutiani, Ani; Situmorang, Manihar; Silalahi, Albinus – International Journal of Instruction, 2021
The development of good learning resources on inquiry learning model with science literacy as a strategy to facilitate active learning has become a trend in education. Critical thinking ability is needed as a strategy to build students competencies in problem solving and discovery as required in science learning. This study aims to develop a set…
Descriptors: Active Learning, Inquiry, Scientific Literacy, Science Process Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Sucre-Rosales, Estefanía; Fernández-Terán, Ricardo; Carvajal, David; Echevarría, Lorenzo; Hernández, Florencio E. – Journal of Chemical Education, 2020
Herein, we present an experience-based learning approach that uses the COVID-19 pandemics knowledge about virus spread and epidemics to establish an analogy between a simple epidemics model--the SIR model (susceptible--infected--removed), and a second-order autocatalytic reaction with subsequent catalyst deactivation. Our approach provides a…
Descriptors: COVID-19, Pandemics, Communicable Diseases, Microbiology
Peer reviewed Peer reviewed
Direct linkDirect link
Rodriguez, Jon-Marc G.; Bain, Kinsey; Hux, Nicholas P.; Towns, Marcy H. – Chemistry Education Research and Practice, 2019
Problem solving is a critical feature of highly quantitative physical science topics, such as chemical kinetics. In order to solve a problem, students must cue into relevant features, ignore irrelevant features, and choose among potential problem-solving approaches. However, what is considered appropriate or productive for problem solving is…
Descriptors: Science Instruction, Problem Solving, Chemistry, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
Bain, Kinsey; Rodriguez, Jon-Marc G.; Towns, Marcy H. – Journal of Chemical Education, 2019
The themes discussed in this study relate to how students reason about the information encoded in rate constants, which is important for developing a deep understanding of chemical kinetics at the molecular level. This study is part of a larger project centered more generally on students' understanding and use of mathematics in chemical kinetics.…
Descriptors: Science Instruction, Teaching Methods, Molecular Structure, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Sztrajman, Jorge; Sztrajman, Alejandro – Physics Teacher, 2017
The aim of this paper is to propose a method for solving head-on elastic collisions, without algebraic complications, to emphasize the use of the fundamental conservations laws. Head-on elastic collisions are treated in many physics textbooks as examples of conservation of momentum and kinetic energy.
Descriptors: Kinetics, Motion, Physics, Teaching Methods
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4