NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1432649
Record Type: Journal
Publication Date: 2024-Aug
Pages: 25
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0013-1644
EISSN: EISSN-1552-3888
Available Date: N/A
Item Parameter Recovery: Sensitivity to Prior Distribution
Educational and Psychological Measurement, v84 n4 p691-715 2024
Marginal maximum likelihood, a common estimation method for item response theory models, is not inherently a Bayesian procedure. However, due to estimation difficulties, Bayesian priors are often applied to the likelihood when estimating 3PL models, especially with small samples. Little focus has been placed on choosing the priors for marginal maximum estimation. In this study, using sample sizes of 1,000 or smaller, not using priors often led to extreme, implausible parameter estimates. Applying prior distributions to the c-parameters alleviated the estimation problems with samples of 500 or more; for the samples of 100, priors on both the a-parameters and c-parameters were needed. Estimates were biased when the mode of the prior did not match the true parameter value, but the degree of the bias did not depend on the strength of the prior unless it was extremely informative. The root mean squared error (RMSE) of the a-parameters and b-parameters did not depend greatly on either the mode or the strength of the prior unless it was extremely informative. The RMSE of the c-parameters, like the bias, depended on the mode of the prior for c.
SAGE Publications. 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243; Tel: 805-499-9774; Fax: 800-583-2665; e-mail: journals@sagepub.com; Web site: https://sagepub-com.bibliotheek.ehb.be
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A