NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ken A. Fujimoto; Carl F. Falk – Educational and Psychological Measurement, 2024
Item response theory (IRT) models are often compared with respect to predictive performance to determine the dimensionality of rating scale data. However, such model comparisons could be biased toward nested-dimensionality IRT models (e.g., the bifactor model) when comparing those models with non-nested-dimensionality IRT models (e.g., a…
Descriptors: Item Response Theory, Rating Scales, Predictive Measurement, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Anirudhan Badrinath; Zachary Pardos – Journal of Educational Data Mining, 2025
Bayesian Knowledge Tracing (BKT) is a well-established model for formative assessment, with optimization typically using expectation maximization, conjugate gradient descent, or brute force search. However, one of the flaws of existing optimization techniques for BKT models is convergence to undesirable local minima that negatively impact…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Problem Solving, Audience Response Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison; Myers, Aaron – Educational Measurement: Issues and Practice, 2019
Drawing valid inferences from modern measurement models is contingent upon a good fit of the data to the model. Violations of model-data fit have numerous consequences, limiting the usefulness and applicability of the model. As Bayesian estimation is becoming more common, understanding the Bayesian approaches for evaluating model-data fit models…
Descriptors: Bayesian Statistics, Psychometrics, Models, Predictive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Sinharay, Sandip; Johnson, Matthew S.; Stern, Hal S. – Applied Psychological Measurement, 2006
Model checking in item response theory (IRT) is an underdeveloped area. There is no universally accepted tool for checking IRT models. The posterior predictive model-checking method is a popular Bayesian model-checking tool because it has intuitive appeal, is simple to apply, has a strong theoretical basis, and can provide graphical or numerical…
Descriptors: Predictive Measurement, Item Response Theory, Bayesian Statistics, Models
Peer reviewed Peer reviewed
Chang, Hua-Hua; Stout, William – Psychometrika, 1993
The asymptotic posterior normality of latent variable distributions is established under very general and appropriate hypotheses, providing a probabilistic basis for assessing ability estimation/prediction accuracy in the long test case, as well as a first step in making the Dutch Identity conjecture rigorous. (SLD)
Descriptors: Ability, Bayesian Statistics, Equations (Mathematics), Estimation (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Pineno, Oskar; de la Casa, Luis Gonzalo; Lubow, R. E.; Miller, Ralph R. – Learning and Motivation, 2006
The present experiments assessed the effects of different manipulations between cue preexposure and cue-outcome pairings on latent inhibition (LI) in a predictive learning task with human participants. To facilitate LI, preexposure and acquisition with the target cues took place while participants performed a secondary task. Presentation of…
Descriptors: Learning Theories, Cues, Inhibition, Experimental Groups
Pechenizkiy, Mykola; Calders, Toon; Conati, Cristina; Ventura, Sebastian; Romero, Cristobal; Stamper, John – International Working Group on Educational Data Mining, 2011
The 4th International Conference on Educational Data Mining (EDM 2011) brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large datasets to answer educational research questions. The conference, held in Eindhoven, The Netherlands, July 6-9, 2011, follows the three previous editions…
Descriptors: Academic Achievement, Logical Thinking, Profiles, Tutoring