Publication Date
| In 2026 | 0 |
| Since 2025 | 11 |
| Since 2022 (last 5 years) | 56 |
| Since 2017 (last 10 years) | 140 |
| Since 2007 (last 20 years) | 259 |
Descriptor
| Intelligent Tutoring Systems | 290 |
| Problem Solving | 290 |
| Mathematics Instruction | 84 |
| Teaching Methods | 70 |
| Educational Technology | 61 |
| Feedback (Response) | 58 |
| Models | 54 |
| Foreign Countries | 50 |
| Artificial Intelligence | 43 |
| Instructional Effectiveness | 43 |
| Learning Processes | 43 |
| More ▼ | |
Source
Author
| Aleven, Vincent | 33 |
| Rummel, Nikol | 14 |
| Barnes, Tiffany | 13 |
| Koedinger, Kenneth R. | 11 |
| Vincent Aleven | 11 |
| Chi, Min | 9 |
| Olsen, Jennifer K. | 9 |
| Lajoie, Susanne P. | 7 |
| McLaren, Bruce M. | 7 |
| Conrad Borchers | 6 |
| Sewall, Jonathan | 6 |
| More ▼ | |
Publication Type
Education Level
| Higher Education | 79 |
| Postsecondary Education | 64 |
| Secondary Education | 56 |
| Middle Schools | 54 |
| Elementary Education | 41 |
| Junior High Schools | 37 |
| High Schools | 23 |
| Intermediate Grades | 22 |
| Grade 5 | 16 |
| Grade 4 | 12 |
| Grade 6 | 12 |
| More ▼ | |
Audience
| Policymakers | 2 |
| Researchers | 2 |
| Teachers | 2 |
| Administrators | 1 |
Location
| Brazil | 7 |
| Pennsylvania | 7 |
| China | 6 |
| Germany | 5 |
| Massachusetts | 5 |
| North Carolina | 4 |
| Taiwan | 4 |
| France | 3 |
| Uruguay | 3 |
| Algeria | 2 |
| California | 2 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 2 |
| Force Concept Inventory | 1 |
| General Educational… | 1 |
| Law School Admission Test | 1 |
| Myers Briggs Type Indicator | 1 |
| Rosenberg Self Esteem Scale | 1 |
| SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
| Does not meet standards | 1 |
Gyuhun Jung; Markel Sanz Ausin; Tiffany Barnes; Min Chi – International Educational Data Mining Society, 2024
We presented two empirical studies to assess the efficacy of two Deep Reinforcement Learning (DRL) frameworks on two distinct Intelligent Tutoring Systems (ITSs) to exploring the impact of Worked Example (WE) and Problem Solving (PS) on student learning. The first study was conducted on a probability tutor where we applied a classic DRL to induce…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Artificial Intelligence, Teaching Methods
Galafassi, Cristiano; Galafassi, Fabiane Flores Penteado; Vicari, Rosa Maria; Reategui, Eliseo Berni – International Journal of Artificial Intelligence in Education, 2023
This work presents the intelligent tutoring system, EvoLogic, developed to assist students in problems of natural production in propositional logic. EvoLogic has been modeled as a multiagent system composed of three autonomous agents: interface, pedagogical and specialist agents. It supports pedagogical strategies inspired by the theory of…
Descriptors: Intelligent Tutoring Systems, Logical Thinking, Models, Teaching Methods
Conrad Borchers; Hendrik Fleischer; David J. Yaron; Bruce M. McLaren; Katharina Scheiter; Vincent Aleven; Sascha Schanze – Journal of Science Education and Technology, 2025
Intelligent tutoring system (ITS) provides learners with step-by-step problem-solving support through scaffolding. Most ITSs have been developed in the USA and incorporate American instructional strategies. How do non-American students perceive and use ITS with different native problem-solving strategies? The present study compares Stoich Tutor,…
Descriptors: Problem Solving, Intelligent Tutoring Systems, Learning Strategies, Protocol Analysis
Anirudhan Badrinath; Zachary Pardos – Journal of Educational Data Mining, 2025
Bayesian Knowledge Tracing (BKT) is a well-established model for formative assessment, with optimization typically using expectation maximization, conjugate gradient descent, or brute force search. However, one of the flaws of existing optimization techniques for BKT models is convergence to undesirable local minima that negatively impact…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Problem Solving, Audience Response Systems
Juan Zheng; Shan Li; Tingting Wang; Susanne P. Lajoie – International Journal of Educational Technology in Higher Education, 2024
Emotions play a crucial role in the learning process, yet there is a scarcity of studies examining emotion dynamics in problem-solving with fine-grained data and advanced tools. This study addresses this gap by investigating the emotional trajectories during self-regulated learning (SRL) phases (i.e., forethought, performance, and self-reflection)…
Descriptors: Medical Students, Problem Solving, Intelligent Tutoring Systems, Nonverbal Communication
Md. Mirajul Islam; Xi Yang; John Hostetter; Adittya Soukarjya Saha; Min Chi – International Educational Data Mining Society, 2024
A key challenge in e-learning environments like Intelligent Tutoring Systems (ITSs) is to induce effective pedagogical policies efficiently. While Deep Reinforcement Learning (DRL) often suffers from "sample inefficiency" and "reward function" design difficulty, Apprenticeship Learning (AL) algorithms can overcome them.…
Descriptors: Electronic Learning, Intelligent Tutoring Systems, Teaching Methods, Algorithms
Zhou, Guojing; Azizsoltani, Hamoon; Ausin, Markel Sanz; Barnes, Tiffany; Chi, Min – International Journal of Artificial Intelligence in Education, 2022
In interactive e-learning environments such as Intelligent Tutoring Systems, pedagogical decisions can be made at different levels of granularity. In this work, we focus on making decisions at "two levels": whole problems vs. single steps and explore three types of granularity: "problem-level only" ("Prob-Only"),…
Descriptors: Electronic Learning, Intelligent Tutoring Systems, Decision Making, Problem Solving
Shakya, Anup; Rus, Vasile; Venugopal, Deepak – International Educational Data Mining Society, 2021
Predicting student problem-solving strategies is a complex problem but one that can significantly impact automated instruction systems since they can adapt or personalize the system to suit the learner. While for small datasets, learning experts may be able to manually analyze data to infer student strategies, for large datasets, this approach is…
Descriptors: Prediction, Problem Solving, Intelligent Tutoring Systems, Learning Strategies
Kole Norberg; Husni Almoubayyed; Stephen Fancsali – International Educational Data Mining Society, 2025
Solving a math word problem (MWP) requires understanding the mathematical components of the problem and an ability to decode the text. For some students, lower reading comprehension skills may make engagement with the mathematical content more difficult. Readability formulas (e.g., Flesch Reading Ease) are frequently used to assess reading…
Descriptors: Mathematics Instruction, Word Problems (Mathematics), Problem Solving, Reading Skills
Qian Xu – Discover Education, 2024
This research suggests a methodology to examine the effectiveness Artificial Intelligence (AI) on the cognitive abilities of college students so that future researchers can utilize this experimental project to focus on how AI-powered Intelligent Tutoring Systems (ITSs) affect learning outcomes. As AI continues to revolutionize all walks of life,…
Descriptors: Artificial Intelligence, Cognitive Ability, College Students, Intelligent Tutoring Systems
Lodder, Josje; Heeren, Bastiaan; Jeuring, Johan; Neijenhuis, Wendy – International Journal of Artificial Intelligence in Education, 2021
This paper describes LOGAX, an interactive tutoring tool that gives hints and feedback to a student who stepwise constructs a Hilbert-style axiomatic proof in propositional logic. LOGAX generates proofs to calculate hints and feedback. We compare these generated proofs with expert proofs and student solutions, and conclude that the quality of the…
Descriptors: Intelligent Tutoring Systems, Cues, Feedback (Response), Mathematical Logic
Schulz, Sandra; McLaren, Bruce M.; Pinkwart, Niels – International Journal of Artificial Intelligence in Education, 2023
This paper develops a method for the construction and evaluation of cognitive models to support students in their problem-solving skills during robotics in school, aiming to build a basis for an implementation of a tutoring system in the future. Two Wizard-of-Oz studies were conducted, one in the classroom and one in the lab. Based on the…
Descriptors: Cognitive Processes, Models, Intelligent Tutoring Systems, Robotics
Bos, Rogier; van den Bogaart, Theo – Digital Experiences in Mathematics Education, 2022
This design-based study addresses the issue of how to digitally support students' problem-solving by providing heuristics, in the absence of the teacher. The problem is that, so far, digital tutoring systems lack the ability to diagnose students' needs in open problem situations. Our approach is based on students' ability to self-diagnose and find…
Descriptors: Heuristics, Problem Solving, Help Seeking, Intelligent Tutoring Systems
Wiegand, R. Paul; Bucci, Anthony; Kumar, Amruth N.; Albert, Jennifer; Gaspar, Alessio – ACM Transactions on Computing Education, 2022
In this article, we leverage ideas from the theory of coevolutionary computation to analyze interactions of students with problems. We introduce the idea of "informatively" easy or hard concepts. Our approach is different from more traditional analyses of problem difficulty such as item analysis in the sense that we consider Pareto…
Descriptors: Concept Formation, Difficulty Level, Computer Science Education, Problem Solving
Conrad Borchers; Tianze Shou – Grantee Submission, 2025
Large Language Models (LLMs) hold promise as dynamic instructional aids. Yet, it remains unclear whether LLMs can replicate the adaptivity of intelligent tutoring systems (ITS)--where student knowledge and pedagogical strategies are explicitly modeled. We propose a prompt variation framework to assess LLM-generated instructional moves' adaptivity…
Descriptors: Benchmarking, Computational Linguistics, Artificial Intelligence, Computer Software

Peer reviewed
Direct link
