NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Khalid Alalawi; Rukshan Athauda; Raymond Chiong; Ian Renner – Education and Information Technologies, 2025
Learning analytics intervention (LAI) studies aim to identify at-risk students early during an academic term using predictive models and facilitate educators to provide effective interventions to improve educational outcomes. A major impediment to the uptake of LAI is the lack of access to LAI infrastructure by educators to pilot LAI, which…
Descriptors: Intervention, Learning Analytics, Guidelines, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Ouyang, Fan; Wu, Mian; Zheng, Luyi; Zhang, Liyin; Jiao, Pengcheng – International Journal of Educational Technology in Higher Education, 2023
As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction model is widely used to identify at-risk students that tend to fail, establish student-centered learning pathways, and optimize instructional design and development. A majority of the existing AI…
Descriptors: Technology Integration, Artificial Intelligence, Performance, Prediction
Jenna Marie Dulak – ProQuest LLC, 2019
The purpose of this study is to determine what demographics and learning analytics can be used as predictors to identify at-risk students in higher education. These indicators can be used to develop policies and instructional design techniques that faculty can use to intervene with at-risk students. This quantitative study uses geographic…
Descriptors: Learning Analytics, Social Indicators, At Risk Students, Educational Policy
Peer reviewed Peer reviewed
Direct linkDirect link
Gupta, Anika; Garg, Deepak; Kumar, Parteek – IEEE Transactions on Learning Technologies, 2022
With the onset of online education via technology-enhanced learning platforms, large amount of educational data is being generated in the form of logs, clickstreams, performance, etc. These Virtual Learning Environments provide an opportunity to the researchers for the application of educational data mining and learning analytics, for mining the…
Descriptors: Markov Processes, Online Courses, Learning Management Systems, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Simonson, Michael, Ed.; Seepersaud, Deborah, Ed. – Association for Educational Communications and Technology, 2021
For the forty-fourth time, the Association for Educational Communications and Technology (AECT) is sponsoring the publication of these Proceedings. Papers published in this volume were presented online and onsite during the annual AECT Convention. Volume 1 contains papers dealing primarily with research and development topics. Papers dealing with…
Descriptors: Educational Technology, Technology Uses in Education, Feedback (Response), Course Evaluation