NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hasegawa, Raiden B.; Deshpande, Sameer K.; Small, Dylan S.; Rosenbaum, Paul R. – Journal of Educational and Behavioral Statistics, 2020
Causal effects are commonly defined as comparisons of the potential outcomes under treatment and control, but this definition is threatened by the possibility that either the treatment or the control condition is not well defined, existing instead in more than one version. This is often a real possibility in nonexperimental or observational…
Descriptors: Causal Models, Inferences, Randomized Controlled Trials, Experimental Groups
Peer reviewed Peer reviewed
Direct linkDirect link
York, Richard – International Journal of Social Research Methodology, 2018
A common motivation for adding control variables to statistical models is to reduce the potential for spurious findings when analyzing non-experimental data and to thereby allow for more reliable causal inferences. However, as I show here, unless "all" potential confounding factors are included in an analysis (which is unlikely to be…
Descriptors: Inferences, Control Groups, Correlation, Experimental Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Glynn, Adam N.; Ichino, Nahomi – Sociological Methods & Research, 2016
We delineate the underlying homogeneity assumption, procedural variants, and implications of the comparative method and distinguish this from Mill's method of difference. We demonstrate that additional units can provide "placebo" tests for the comparative method even if the scope of inference is limited to the two units under comparison.…
Descriptors: Comparative Analysis, Research Methodology, Causal Models, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Harvill, Eleanor L.; Peck, Laura R.; Bell, Stephen H. – American Journal of Evaluation, 2013
Using exogenous characteristics to identify endogenous subgroups, the approach discussed in this method note creates symmetric subsets within treatment and control groups, allowing the analysis to take advantage of an experimental design. In order to maintain treatment--control symmetry, however, prior work has posited that it is necessary to use…
Descriptors: Experimental Groups, Control Groups, Research Design, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Connelly, Brian S.; Sackett, Paul R.; Waters, Shonna D. – Personnel Psychology, 2013
Organizational and applied sciences have long struggled with improving causal inference in quasi-experiments. We introduce organizational researchers to propensity scoring, a statistical technique that has become popular in other applied sciences as a means for improving internal validity. Propensity scoring statistically models how individuals in…
Descriptors: Quasiexperimental Design, Control Groups, Inferences, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Freedman, David A. – Evaluation Review, 2006
Experiments offer more reliable evidence on causation than observational studies, which is not to gainsay the contribution to knowledge from observation. Experiments should be analyzed as experiments, not as observational studies. A simple comparison of rates might be just the right tool, with little value added by "sophisticated" models. This…
Descriptors: Experiments, Control Groups, Inferences, Comparative Analysis