Publication Date
| In 2026 | 0 |
| Since 2025 | 5 |
| Since 2022 (last 5 years) | 23 |
| Since 2017 (last 10 years) | 63 |
| Since 2007 (last 20 years) | 220 |
Descriptor
| Data Analysis | 253 |
| Identification | 253 |
| Models | 49 |
| Foreign Countries | 41 |
| Intervention | 39 |
| Academic Achievement | 33 |
| At Risk Students | 32 |
| Interviews | 29 |
| Comparative Analysis | 28 |
| Data Collection | 28 |
| Prediction | 28 |
| More ▼ | |
Source
Author
Publication Type
Education Level
Location
| United States | 15 |
| Florida | 7 |
| Illinois | 6 |
| United Kingdom | 6 |
| United Kingdom (England) | 6 |
| Australia | 5 |
| Canada | 5 |
| Maryland | 5 |
| Michigan | 4 |
| New York | 4 |
| New Zealand | 4 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Giora Alexandron; Aviram Berg; Jose A. Ruiperez-Valiente – IEEE Transactions on Learning Technologies, 2024
This article presents a general-purpose method for detecting cheating in online courses, which combines anomaly detection and supervised machine learning. Using features that are rooted in psychometrics and learning analytics literature, and capture anomalies in learner behavior and response patterns, we demonstrate that a classifier that is…
Descriptors: Cheating, Identification, Online Courses, Artificial Intelligence
Michael L. Chrzan; Francis A. Pearman; Benjamin W. Domingue – Annenberg Institute for School Reform at Brown University, 2025
The increasing rate of permanent school closures in U.S. public school districts presents unprecedented challenges for administrators and communities alike. This study develops an early-warning indicator model to predict mass closure events -- defined as a district closing at least 10% of its schools -- five years in advance. Leveraging…
Descriptors: Artificial Intelligence, Electronic Learning, School Districts, School Closing
Chaewon Lee; Lan Luo; Shelbi L. Kuhlmann; Robert D. Plumley; Abigail T. Panter; Matthew L. Bernacki; Jeffrey A. Greene; Kathleen M. Gates – Journal of Learning Analytics, 2025
The increasing use of learning management systems (LMSs) generates vast amounts of clickstream data, opening new avenues for predicting learner performance. Traditionally, LMS predictive analytics have relied on either supervised machine learning or Markov models to classify learners based on predicted learning outcomes. Machine learning excels at…
Descriptors: Electronic Learning, Prediction, Data Analysis, Artificial Intelligence
Austin Wyman; Zhiyong Zhang – Grantee Submission, 2025
Automated detection of facial emotions has been an interesting topic for multiple decades in social and behavioral research but is only possible very recently. In this tutorial, we review three popular artificial intelligence based emotion detection programs that are accessible to R programmers: Google Cloud Vision, Amazon Rekognition, and…
Descriptors: Artificial Intelligence, Algorithms, Computer Software, Identification
Zirou Lin; Hanbing Yan; Li Zhao – Journal of Computer Assisted Learning, 2024
Background: Peer assessment has played an important role in large-scale online learning, as it helps promote the effectiveness of learners' online learning. However, with the emergence of numerical grades and textual feedback generated by peers, it is necessary to detect the reliability of the large amount of peer assessment data, and then develop…
Descriptors: Peer Evaluation, Automation, Grading, Models
Kelli Bird – Association for Institutional Research, 2023
Colleges are increasingly turning to predictive analytics to identify "at-risk" students in order to target additional supports. While recent research demonstrates that the types of prediction models in use are reasonably accurate at identifying students who will eventually succeed or not, there are several other considerations for the…
Descriptors: Prediction, Data Analysis, Artificial Intelligence, Identification
Liao, Manqian; Patton, Jeffrey; Yan, Ray; Jiao, Hong – Measurement: Interdisciplinary Research and Perspectives, 2021
Item harvesters who memorize, record and share test items can jeopardize the validity and fairness of credentialing tests. Item harvesting behaviors are difficult to detect by the existing statistical modeling approaches due to the absence of operational definitions and the idiosyncratic nature of human behaviors. Motivated to detect the…
Descriptors: Data Analysis, Cheating, Identification, Behavior Patterns
Khan, Anupam; Ghosh, Soumya K. – Education and Information Technologies, 2021
Student performance modelling is one of the challenging and popular research topics in educational data mining (EDM). Multiple factors influence the performance in non-linear ways; thus making this field more attractive to the researchers. The widespread availability of educational datasets further catalyse this interestingness, especially in…
Descriptors: Academic Achievement, Prediction, Data Analysis, Meta Analysis
Kearney, Christopher A.; Childs, Joshua – Improving Schools, 2023
School attendance and absenteeism are critical targets of educational policies and practices that often depend heavily on aggregated attendance/absenteeism data. School attendance/absenteeism data in aggregated form, in addition to having suspect quality and utility, minimizes individual student variation, distorts detailed and multilevel…
Descriptors: Data Analysis, Attendance, Educational Policy, Causal Models
Selma Tosun; Dilara Bakan Kalaycioglu – Journal of Educational Technology and Online Learning, 2024
Predicting and improving the academic achievement of university students is a multifactorial problem. Considering the low success rates and high dropout rates, particularly in open education programs characterized by mass enrollment, academic success is an important research area with its causes and consequences. This study aimed to solve a…
Descriptors: Academic Achievement, Open Education, Distance Education, Foreign Countries
Matsuda, Noboru; Wood, Jesse; Shrivastava, Raj; Shimmei, Machi; Bier, Norman – Journal of Educational Data Mining, 2022
A model that maps the requisite skills, or knowledge components, to the contents of an online course is necessary to implement many adaptive learning technologies. However, developing a skill model and tagging courseware contents with individual skills can be expensive and error prone. We propose a technology to automatically identify latent…
Descriptors: Skills, Models, Identification, Courseware
Davies, Randall; Allen, Gove; Albrecht, Conan; Bakir, Nesrin; Ball, Nick – Education Sciences, 2021
Analyzing the learning analytics from a course provides insights that can impact instructional design decisions. This study used educational data mining techniques, specifically a longitudinal k-means cluster analysis, to identify the strategies students used when completing the online portion of an online flipped spreadsheet course. An analysis…
Descriptors: Data Analysis, Identification, Learning Strategies, Electronic Learning
Heilmann, John; Miller, Jon F. – Perspectives of the ASHA Special Interest Groups, 2023
Purpose: In the early 1980s, researchers and speech-language pathologists (SLPs) collaborated to develop the Systematic Analysis of Language Transcripts (SALT). Research and development over the ensuing decades has culminated into SALT Solutions, a set of tools to assist SLPs to efficiently complete language sample analysis (LSA) with their…
Descriptors: Sampling, Language Usage, Data Analysis, Data Collection
J. Bryan Osborne; Andrew S. I. D. Lang – Journal of Postsecondary Student Success, 2023
This paper describes a neural network model that can be used to detect at- risk students failing a particular course using only grade book data from a learning management system. By analyzing data extracted from the learning management system at the end of week 5, the model can predict with an accuracy of 88% whether the student will pass or fail…
Descriptors: Identification, At Risk Students, Learning Management Systems, Prediction
Cheng, Ying; Shao, Can – Educational and Psychological Measurement, 2022
Computer-based and web-based testing have become increasingly popular in recent years. Their popularity has dramatically expanded the availability of response time data. Compared to the conventional item response data that are often dichotomous or polytomous, response time has the advantage of being continuous and can be collected in an…
Descriptors: Reaction Time, Test Wiseness, Computer Assisted Testing, Simulation

Peer reviewed
Direct link
