Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 1 |
| Since 2007 (last 20 years) | 1 |
Descriptor
Source
| Physics Education | 3 |
| Assessment and Evaluation in… | 1 |
| Australian Mathematics Teacher | 1 |
| Computers and Education | 1 |
| For the Learning of… | 1 |
| IGI Global | 1 |
| Mathematics in School | 1 |
Author
| Catania, Giovanna | 1 |
| Gamble, R. | 1 |
| Kapadia, Ramesh, Ed. | 1 |
| Kitchen, Ann | 1 |
| Kupari, Pekka | 1 |
| Kyffin, Huw, Ed. | 1 |
| Mahmoud, Mohamed M. | 1 |
| Ramírez-Montoya,… | 1 |
| Rogers, David F., Ed. | 1 |
| Smith, P. R., Ed. | 1 |
| Stacey, Kaye | 1 |
| More ▼ | |
Publication Type
Education Level
| High Schools | 1 |
| Higher Education | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Postsecondary Education | 1 |
| Secondary Education | 1 |
Audience
| Practitioners | 12 |
| Teachers | 7 |
| Researchers | 4 |
| Administrators | 1 |
| Students | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ramírez-Montoya, María-Soledad, Ed. – IGI Global, 2017
Educational strategies have evolved over the years, due to research breakthroughs and the application of technology. By using the latest learning innovations, curriculum and instructional design can be enhanced and strengthened. The "Handbook of Research on Driving STEM Learning with Educational Technologies" is an authoritative…
Descriptors: Guides, STEM Education, Educational Technology, Foreign Countries
Kapadia, Ramesh, Ed.; Kyffin, Huw, Ed. – 1985
This document consists of seven chapters. The first chapter analyzes the modeling process and gives reasons for introducing a modeling approach in classrooms, arguing that students will develop more confident and positive attitudes toward mathematics. The next five chapters contain case studies, which focus, respectively on: whether it is more…
Descriptors: College Mathematics, Foreign Countries, Higher Education, Mathematical Models
Kupari, Pekka – 1994
This study examined the role and development of applied problem solving in mathematics education in the Finnish comprehensive school. The development during the 1980s of applied problem solving in schools was positive in many ways: the changes were cautious and took place more slowly than had been planned; and many obstacles related to the…
Descriptors: Educational History, Elementary Secondary Education, Foreign Countries, International Studies
Peer reviewedZachary, Deborah – Physics Education, 1989
Identifies and discusses the overlap between mathematics and physics at different educational levels. Presents some examples of the overlap and some suggestions for teachers. (YP)
Descriptors: Foreign Countries, Mathematical Models, Mathematics Curriculum, Mathematics Skills
Peer reviewedRogers, David F., Ed.; Smith, P. R., Ed. – Computers and Education, 1984
Hardware for computer-assisted learning is discussed in three papers. Two papers report on projects using computer graphics, one for teaching structural analysis to university students and the other to teach graph concepts at the secondary level. Guidelines for selecting microcomputers focus on analyzing applications and matching them with…
Descriptors: Computer Graphics, Computer Simulation, Courseware, Elementary Secondary Education
Peer reviewedKitchen, Ann – Mathematics in School, 1989
Discusses three types of bridges to determine how best to model each one: (1) drawbridge; (2) balance bridge; and (3) bascule bridge. Describes four experiments with assumptions, analyses, interpretations, and validations. Provides several diagrams and pictures of the bridges, and typical data. (YP)
Descriptors: Foreign Countries, Mathematical Applications, Mathematical Enrichment, Mathematical Formulas
Peer reviewedCatania, Giovanna – Physics Education, 1987
Criticizes the current method of formalization in Italian schools and the use of tools of the mathematical method. Proposes a general three-stage formalization method which can used for physical quantities, the particular significance of certain quantities, and the description and interpretation of phenomena. (TW)
Descriptors: Cognitive Processes, Foreign Countries, Learning Strategies, Mathematical Applications
Peer reviewedMahmoud, Mohamed M. – Assessment and Evaluation in Higher Education, 1991
A study used correlational analysis and step-wise multiple regression to build mathematical models representing the dynamics of student evaluation of courses and teachers. The resulting models were very strong and were subsequently used to improve academic programs in Kuwait's Institute of Banking Studies. (Author/MSE)
Descriptors: Course Evaluation, Decision Making, Evaluation Criteria, Evaluation Methods
Peer reviewedZeitler, Herbert – For the Learning of Mathematics, 1990
Geometric axioms are discussed in terms of philosophy, history, refinements, and basic concepts. The triumphs and limitations of the formalism theory are included. Described is the status of high school geometry internationally. (KR)
Descriptors: Comparative Education, Foreign Countries, Geometric Concepts, Geometry
Peer reviewedStacey, Kaye – Australian Mathematics Teacher, 1987
Discusses some of the aspects of problem solving that teachers can observe for assessment purposes in a student's practical and written work. Suggests that these observations can be incorporated into a student's assessment traditionally or using alternative assessment devices. (PK)
Descriptors: Educational Assessment, Elementary School Mathematics, Elementary Secondary Education, Foreign Countries
Peer reviewedGamble, R. – Physics Education, 1986
Considers several aspects of quantitative relationships involved in learning physics. Includes discussions of proportionality, various kinds of equality, and the need for generality. Argues that clear distinctions are necessary if the physics curriculum is to be examined with regard to pupil outcomes. (TW)
Descriptors: Definitions, Equations (Mathematics), Foreign Countries, Mathematical Applications
Zaslavsky, Claudia – 1990
This document describes the contributions of African peoples to the science of mathematics. The development of a number system is seen as related to need. Names of numbers, time reckoning, gesture counting, and counting materials are examined. Mystical beliefs about numbers and special meanings in pattern are presented. Reproductions of patterns,…
Descriptors: African Culture, Architecture, Art, Beliefs

Direct link
