Publication Date
| In 2026 | 0 |
| Since 2025 | 29 |
| Since 2022 (last 5 years) | 111 |
| Since 2017 (last 10 years) | 167 |
| Since 2007 (last 20 years) | 168 |
Descriptor
Source
Author
Publication Type
Education Level
Audience
| Teachers | 1 |
Location
| Australia | 9 |
| China | 8 |
| Germany | 5 |
| Netherlands | 5 |
| Turkey | 5 |
| United Arab Emirates | 3 |
| Belgium | 2 |
| Brazil | 2 |
| China (Beijing) | 2 |
| Connecticut | 2 |
| Europe | 2 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Motivated Strategies for… | 4 |
| National Assessment of… | 1 |
| Program for International… | 1 |
What Works Clearinghouse Rating
Onur Karademir; Daniele Di Mitri; Jan Schneider; Ioana Jivet; Jörn Allmang; Sebastian Gombert; Marcus Kubsch; Knut Neumann; Hendrik Drachsler – Journal of Computer Assisted Learning, 2024
Background: Teacher dashboards can help secondary school teachers manage online learning activities and inform instructional decisions by visualising information about class learning. However, when designing teacher dashboards, it is not trivial to choose which information to display, because not all of the vast amount of information retrieved…
Descriptors: Learning Analytics, Secondary School Teachers, Educational Technology, Design
Ramaswami, Gomathy; Susnjak, Teo; Mathrani, Anuradha; Umer, Rahila – Technology, Knowledge and Learning, 2023
Learning analytics dashboards (LADs) provide educators and students with a comprehensive snapshot of the learning domain. Visualizations showcasing student learning behavioral patterns can help students gain greater self-awareness of their learning progression, and at the same time assist educators in identifying those students who may be facing…
Descriptors: Prediction, Learning Analytics, Learning Management Systems, Identification
Karaoglan Yilmaz, Fatma Gizem – Asia-Pacific Education Researcher, 2022
The use of the flipped classroom (FC) model in higher education is becoming increasingly common. Although the FC model has many benefits, there are some limitations using this model for learners who do not have self-directed learning skills and do not have a developed learner autonomy. One of these limitations is that students with low academic…
Descriptors: Learning Analytics, Self Efficacy, Problem Solving, Flipped Classroom
Timothy Gallagher; Bert Slof; Marieke van der Schaaf; Ryo Toyoda; Yusra Tehreem; Sofia Garcia Fracaro; Liesbeth Kester – Journal of Computer Assisted Learning, 2024
Background: The potential of learning analytics dashboards in virtual reality simulation-based training environments to influence occupational self-efficacy via self-reflection phase processes in the Chemical industry is still not fully understood. Learning analytics dashboards provide feedback on learner performance and offer points of comparison…
Descriptors: Learning Analytics, Self Efficacy, Reflection, Chemistry
Nuo Cheng; Wei Zhao; Xiaoqing Xu; Hongxia Liu; Jinhong Tao – Education and Information Technologies, 2024
Learning analytics dashboards are becoming increasingly common tools for providing feedback to learners. However, there is limited empirical evidence regarding the effects of learning analytics dashboard design features on learners' cognitive load, particularly in digital learning environments. To address this gap, we developed goal-based,…
Descriptors: Learning Analytics, Learning Management Systems, Cognitive Ability, Online Courses
Karaoglan Yilmaz, Fatma Gizem – Journal of Computing in Higher Education, 2022
This research examined the effect of learning analytics (LA) on students' metacognitive awareness and academic achievement in an online learning environment. In this study, a mixed methods approach was used and applied as a quasi-experimental design. The results of LA were sent to students weekly in LA group (experimental group) via learning…
Descriptors: Learning Analytics, Feedback (Response), Metacognition, Academic Achievement
Darvishi, Ali; Khosravi, Hassan; Sadiq, Shazia; Gaševic, Dragan – British Journal of Educational Technology, 2022
Peer assessment has been recognised as a sustainable and scalable assessment method that promotes higher-order learning and provides students with fast and detailed feedback on their work. Despite these benefits, some common concerns and criticisms are associated with the use of peer assessments (eg, scarcity of high-quality feedback from peer…
Descriptors: Artificial Intelligence, Learning Analytics, Peer Evaluation, Student Evaluation
Bhagya Maheshi; Wei Dai; Roberto Martinez-Maldonado; Yi-Shan Tsai – Journal of Computer Assisted Learning, 2024
Background: Feedback is central to formative assessments but aligns with a one-way information transmission perspective obstructing students' effective engagement with feedback. Previous research has shown that a responsive, dialogic feedback process that requires educators and students to engage in ongoing conversations can encourage student…
Descriptors: Feedback (Response), Learning Analytics, Dialogs (Language), Learner Engagement
Onur Karademir; Lena Borgards; Daniele Di Mitri; Sebastian Strauß; Marcus Kubsch; Markus Brobeil; Adrian Grimm; Sebastian Gombert; Nikol Rummel; Knut Neumann; Hendrik Drachsler – Journal of Learning Analytics, 2024
This paper presents a teacher dashboard intervention study in secondary school practice involving teachers (n = 16) with their classes (n = 22) and students (n = 403). A quasi-experimental treatment-control group design was implemented to compare student learning outcomes between classrooms where teachers did not have access to the dashboard and…
Descriptors: Learning Analytics, Intervention, Educational Technology, Secondary School Students
Hongwen Guo; Matthew S. Johnson; Kadriye Ercikan; Luis Saldivia; Michelle Worthington – Journal of Learning Analytics, 2024
Large-scale assessments play a key role in education: educators and stakeholders need to know what students know and can do, so that they can be prepared for education policies and interventions in teaching and learning. However, a score from the assessment may not be enough--educators need to know why students got low scores, how students engaged…
Descriptors: Artificial Intelligence, Learning Analytics, Learning Management Systems, Measurement
Natasha Arthars; Kate Thompson; Henk Huijser; Steven Kickbusch; Samuel Cunningham; Gavin Winter; Roger Cook; Lori Lockyer – Australasian Journal of Educational Technology, 2024
Assessing group work formatively in higher education poses a significant challenge. The complexity of evaluating individual contributions is compounded by the lack of efficient and effective methods for tracking, analysing and assessing individual engagement and contributions, which can impede timely feedback and the development of group work…
Descriptors: Formative Evaluation, Cooperative Learning, College Students, Student Evaluation
Kasra Lekan; Zachary A. Pardos – Journal of Learning Analytics, 2025
Choosing an undergraduate major is an important decision that impacts academic and career outcomes. In this work, we investigate augmenting personalized human advising for major selection using a large language model (LLM), GPT-4. Through a three-phase survey, we compare GPT suggestions and responses for undeclared first- and second-year students…
Descriptors: Technology Uses in Education, Artificial Intelligence, Academic Advising, Majors (Students)
Hatice Yildiz Durak – Education and Information Technologies, 2025
Feedback is critical in providing personalized information about educational processes and supporting their performance in online collaborative learning environments. However, giving effective feedback and monitoring its effects, which is especially important in online environments, is a complex issue. Although providing feedback by analyzing…
Descriptors: Feedback (Response), Online Systems, Electronic Learning, Learning Analytics
Wen-shuang Fu; Jia-hua Zhang; Di Zhang; Tian-tian Li; Min Lan; Na-na Liu – Journal of Educational Computing Research, 2025
Cognitive ability is closely associated with the acquisition of programming skills, and enhancing learners' cognitive ability is a crucial factor in improving the efficacy of programming education. Adaptive feedback strategies can provide learners with personalized support based on their learning context, which helps to stimulate their interest…
Descriptors: Feedback (Response), Cognitive Ability, Programming, Computer Science Education
Conrad Borchers; Cindy Peng; Qianru Lyu; Paulo F. Carvalho; Kenneth R. Koedinger; Vincent Aleven – Grantee Submission, 2025
Many AIED systems support self-regulated learning, yet, support for setting and achieving practice goals has received little attention. We examine how middle school students respond to system-recommended practice goals, building on the success of similar data-driven recommendations in other domains. We introduce an adaptive dashboard in an…
Descriptors: Goal Orientation, Student Attitudes, Self Control, Intelligent Tutoring Systems

Peer reviewed
Direct link
