NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 58 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lodder, Josje; Heeren, Bastiaan; Jeuring, Johan; Neijenhuis, Wendy – International Journal of Artificial Intelligence in Education, 2021
This paper describes LOGAX, an interactive tutoring tool that gives hints and feedback to a student who stepwise constructs a Hilbert-style axiomatic proof in propositional logic. LOGAX generates proofs to calculate hints and feedback. We compare these generated proofs with expert proofs and student solutions, and conclude that the quality of the…
Descriptors: Intelligent Tutoring Systems, Cues, Feedback (Response), Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Conrad Borchers; Tianze Shou – Grantee Submission, 2025
Large Language Models (LLMs) hold promise as dynamic instructional aids. Yet, it remains unclear whether LLMs can replicate the adaptivity of intelligent tutoring systems (ITS)--where student knowledge and pedagogical strategies are explicitly modeled. We propose a prompt variation framework to assess LLM-generated instructional moves' adaptivity…
Descriptors: Benchmarking, Computational Linguistics, Artificial Intelligence, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Matsuda, Noboru – International Journal of Artificial Intelligence in Education, 2022
This paper demonstrates that a teachable agent (TA) can play a dual role in an online learning environment (OLE) for learning by teaching--the teachable agent working as a synthetic peer for students to learn by teaching and as an interactive tool for cognitive task analysis when authoring an OLE for learning by teaching. We have developed an OLE…
Descriptors: Artificial Intelligence, Teaching Methods, Intelligent Tutoring Systems, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Kochmar, Ekaterina; Vu, Dung Do; Belfer, Robert; Gupta, Varun; Serban, Iulian Vlad; Pineau, Joelle – International Journal of Artificial Intelligence in Education, 2022
Intelligent tutoring systems (ITS) have been shown to be highly effective at promoting learning as compared to other computer-based instructional approaches. However, many ITS rely heavily on expert design and hand-crafted rules. This makes them difficult to build and transfer across domains and limits their potential efficacy. In this paper, we…
Descriptors: Intelligent Tutoring Systems, Automation, Feedback (Response), Dialogs (Language)
Peer reviewed Peer reviewed
Direct linkDirect link
Xuanyan Zhong; Zehui Zhan – Interactive Technology and Smart Education, 2025
Purpose: The purpose of this study is to develop an intelligent tutoring system (ITS) for programming learning based on information tutoring feedback (ITF) to provide real-time guidance and feedback to self-directed learners during programming problem-solving and to improve learners' computational thinking. Design/methodology/approach: By…
Descriptors: Intelligent Tutoring Systems, Computer Science Education, Programming, Independent Study
Peer reviewed Peer reviewed
Direct linkDirect link
King, Emily C.; Benson, Max; Raysor, Sandra; Holme, Thomas A.; Sewall, Jonathan; Koedinger, Kenneth R.; Aleven, Vincent; Yaron, David J. – Journal of Chemical Education, 2022
This report showcases a new type of online homework system that provides students with a free-form interface and dynamic feedback. The ORCCA Tutor (Open-Response Chemistry Cognitive Assistance Tutor) is a production rules-based online tutoring system utilizing the Cognitive Tutoring Authoring Tools (CTAT) developed by Carnegie Mellon University.…
Descriptors: Intelligent Tutoring Systems, Chemistry, Homework, Feedback (Response)
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Suwicha Wittayakom; Chintana Kanjanavisutt; Methinee Wongwanich Rumpagaporn – Higher Education Studies, 2024
This systematic literature review explores the implementation and effectiveness of active learning approaches in online training environments. The rapid growth of online education necessitates strategies that enhance learner engagement and improve educational outcomes. The review identifies various active learning techniques, such as discussions,…
Descriptors: Online Courses, Training, Active Learning, Learning Strategies
Peer reviewed Peer reviewed
Direct linkDirect link
Claudia Lizette Garay-Rondero; Alvaro Castillo-Paz; Carlos Gijón-Rivera; Gerardo Domínguez-Ramírez; Conrado Rosales-Torres; Alberto Oliart-Ros – Cogent Education, 2024
Higher Education faces challenges in providing learning experiences and cultivating competencies in our modern environment. Academic discourse centres on tutoring automation, a complicated educational dilemma in the age of Machine Learning, Deep Learning, and Artificial Intelligence. Establishing a structured technique for real competency…
Descriptors: Competency Based Education, Performance Based Assessment, Evaluation Methods, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Jingjing; Gao, Ming; Holmes, Wayne; Mavrikis, Manolis; Ma, Ning – Interactive Learning Environments, 2021
Feedback in exploratory learning systems has been depicted as an important contributor to encourage exploration. However, few studies have explored learners' interaction patterns associated with feedback and the use of external representations in exploratory learning environments. This study used Fractions Lab, an exploratory learning environment…
Descriptors: Interaction, Behavior Patterns, Discovery Learning, Fractions
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Mengxue; Wang, Zichao; Baraniuk, Richard; Lan, Andrew – International Educational Data Mining Society, 2021
Feedback on student answers and even during intermediate steps in their solutions to open-ended questions is an important element in math education. Such feedback can help students correct their errors and ultimately lead to improved learning outcomes. Most existing approaches for automated student solution analysis and feedback require manually…
Descriptors: Mathematics Instruction, Teaching Methods, Intelligent Tutoring Systems, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Tacoma, Sietske; Heeren, Bastiaan; Jeuring, Johan; Drijvers, Paul – International Journal of Artificial Intelligence in Education, 2020
Hypothesis testing involves a complex stepwise procedure that is challenging for many students in introductory university statistics courses. In this paper we assess how feedback from an Intelligent Tutoring System can address the logic of hypothesis testing and whether such feedback contributes to first-year social sciences students' proficiency…
Descriptors: Hypothesis Testing, Feedback (Response), Intelligent Tutoring Systems, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Matsuda, Noboru; Weng, Wenting; Wall, Natalie – International Journal of Artificial Intelligence in Education, 2020
The effect of metacognitive scaffolding for learning by teaching was investigated and compared against learning by being tutored. Three versions of an online learning environment for learning algebra equations were created: (1) APLUS that allows students to interactively teach a synthetic peer with a goal to have the synthetic peer pass the quiz…
Descriptors: Metacognition, Scaffolding (Teaching Technique), Tutoring, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Broisin, Julien; Hérouard, Clément – International Educational Data Mining Society, 2019
How to support students in programming learning has been a great research challenge in the last years. To address this challenge, prior works have mainly focused on proposing solutions based on syntactic analysis to provide students with personalized feedback about their grammatical programming errors and misconceptions. However, syntactic…
Descriptors: Semantics, Programming, Syntax, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Mitrovic, Antonija; Suraweera, Pramuditha – International Journal of Artificial Intelligence in Education, 2016
Design tasks are difficult to teach, due to large, unstructured solution spaces, underspecified problems, non-existent problem solving algorithms and stopping criteria. In this paper, we comment on our approach to develop KERMIT, a constraint-based tutor that taught database design. In later work, we re-implemented KERMIT as EER-Tutor, and…
Descriptors: Database Design, Intelligent Tutoring Systems, Problem Solving, Semantics
Peer reviewed Peer reviewed
Direct linkDirect link
Aleven, Vincent; Roll, Ido; McLaren, Bruce M.; Koedinger, Kenneth R. – International Journal of Artificial Intelligence in Education, 2016
Help seeking is an important process in self-regulated learning (SRL). It may influence learning with intelligent tutoring systems (ITSs), because many ITSs provide help, often at the student's request. The Help Tutor was a tutor agent that gave in-context, real-time feedback on students' help-seeking behavior, as they were learning with an ITS.…
Descriptors: Intelligent Tutoring Systems, Artificial Intelligence, Help Seeking, Feedback (Response)
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4