NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of…1
What Works Clearinghouse Rating
Showing 1 to 15 of 29 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sideridis, Georgios D.; Jaffari, Fathima – Measurement and Evaluation in Counseling and Development, 2022
The utility of the maximum likelihood F-test was demonstrated as an alternative to the omnibus Chi-square test when evaluating model fit in confirmatory factor analysis with small samples, as it has been well documented that the likelihood ratio test (T[subscript ML]) with small samples is not Chi-square distributed.
Descriptors: Maximum Likelihood Statistics, Factor Analysis, Alternative Assessment, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Bang Quan Zheng; Peter M. Bentler – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Chi-square tests based on maximum likelihood (ML) estimation of covariance structures often incorrectly over-reject the null hypothesis: [sigma] = [sigma(theta)] when the sample size is small. Reweighted least squares (RLS) avoids this problem. In some models, the vector of parameter must contain means, variances, and covariances, yet whether RLS…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Goodness of Fit, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Bogaert, Jasper; Loh, Wen Wei; Rosseel, Yves – Educational and Psychological Measurement, 2023
Factor score regression (FSR) is widely used as a convenient alternative to traditional structural equation modeling (SEM) for assessing structural relations between latent variables. But when latent variables are simply replaced by factor scores, biases in the structural parameter estimates often have to be corrected, due to the measurement error…
Descriptors: Factor Analysis, Regression (Statistics), Structural Equation Models, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Shi, Dexin; DiStefano, Christine; Zheng, Xiaying; Liu, Ren; Jiang, Zhehan – International Journal of Behavioral Development, 2021
This study investigates the performance of robust maximum likelihood (ML) estimators when fitting and evaluating small sample latent growth models with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N < 100). Among the robust ML…
Descriptors: Growth Models, Maximum Likelihood Statistics, Factor Analysis, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Jobst, Lisa J.; Auerswald, Max; Moshagen, Morten – Educational and Psychological Measurement, 2022
Prior studies investigating the effects of non-normality in structural equation modeling typically induced non-normality in the indicator variables. This procedure neglects the factor analytic structure of the data, which is defined as the sum of latent variables and errors, so it is unclear whether previous results hold if the source of…
Descriptors: Goodness of Fit, Structural Equation Models, Error of Measurement, Factor Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cortes, Sylvester T.; Pineda, Hedeliza A.; Geverola, Immar Jun R. – Advanced Education, 2021
The instrument that assesses teachers' competence on AR methodology is limited. Thus, it is one of the issues concerning evaluating the effectiveness of a professional development program on designing AR projects. It is difficult to determine how much and what teachers have learned in a course or training. Thus, this cross-sectional study aimed to…
Descriptors: Factor Analysis, Teacher Competencies, Action Research, Questionnaires
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kilic, Abdullah Faruk; Uysal, Ibrahim; Atar, Burcu – International Journal of Assessment Tools in Education, 2020
This Monte Carlo simulation study aimed to investigate confirmatory factor analysis (CFA) estimation methods under different conditions, such as sample size, distribution of indicators, test length, average factor loading, and factor structure. Binary data were generated to compare the performance of maximum likelihood (ML), mean and variance…
Descriptors: Factor Analysis, Computation, Methods, Sample Size
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kilic, Abdullah Faruk; Dogan, Nuri – International Journal of Assessment Tools in Education, 2021
Weighted least squares (WLS), weighted least squares mean-and-variance-adjusted (WLSMV), unweighted least squares mean-and-variance-adjusted (ULSMV), maximum likelihood (ML), robust maximum likelihood (MLR) and Bayesian estimation methods were compared in mixed item response type data via Monte Carlo simulation. The percentage of polytomous items,…
Descriptors: Factor Analysis, Computation, Least Squares Statistics, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Hoofs, Huub; van de Schoot, Rens; Jansen, Nicole W. H.; Kant, IJmert – Educational and Psychological Measurement, 2018
Bayesian confirmatory factor analysis (CFA) offers an alternative to frequentist CFA based on, for example, maximum likelihood estimation for the assessment of reliability and validity of educational and psychological measures. For increasing sample sizes, however, the applicability of current fit statistics evaluating model fit within Bayesian…
Descriptors: Goodness of Fit, Bayesian Statistics, Factor Analysis, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Jian; Lomax, Richard G. – Journal of Experimental Education, 2017
Using Monte Carlo simulations, this research examined the performance of four missing data methods in SEM under different multivariate distributional conditions. The effects of four independent variables (sample size, missing proportion, distribution shape, and factor loading magnitude) were investigated on six outcome variables: convergence rate,…
Descriptors: Monte Carlo Methods, Structural Equation Models, Evaluation Methods, Measurement Techniques
Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun – Grantee Submission, 2017
The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…
Descriptors: Statistical Analysis, Evaluation Methods, Structural Equation Models, Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Sharma, Sujeet Kumar; Sarrab, Mohamed; Al-Shihi, Hafedh – Interactive Learning Environments, 2017
The growth of Smartphone usage, increased acceptance of electronic learning (E-learning), the availability of high reliability mobile networks and need for flexibility in learning have resulted in the growth of mobile learning (M-learning). This has led to a tremendous interest in the acceptance behaviors related to M-learning users among the…
Descriptors: Test Construction, Test Validity, Measures (Individuals), Surveys
Peer reviewed Peer reviewed
Direct linkDirect link
Asún, Rodrigo A.; Rdz-Navarro, Karina; Alvarado, Jesús M. – Sociological Methods & Research, 2016
This study compares the performance of two approaches in analysing four-point Likert rating scales with a factorial model: the classical factor analysis (FA) and the item factor analysis (IFA). For FA, maximum likelihood and weighted least squares estimations using Pearson correlation matrices among items are compared. For IFA, diagonally weighted…
Descriptors: Likert Scales, Item Analysis, Factor Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Koran, Jennifer – Measurement and Evaluation in Counseling and Development, 2016
Proactive preliminary minimum sample size determination can be useful for the early planning stages of a latent variable modeling study to set a realistic scope, long before the model and population are finalized. This study examined existing methods and proposed a new method for proactive preliminary minimum sample size determination.
Descriptors: Factor Analysis, Sample Size, Models, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Jackson, Dennis L.; Voth, Jennifer; Frey, Marc P. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Determining an appropriate sample size for use in latent variable modeling techniques has presented ongoing challenges to researchers. In particular, small sample sizes are known to present concerns over sampling error for the variances and covariances on which model estimation is based, as well as for fit indexes and convergence failures. The…
Descriptors: Sample Size, Factor Analysis, Measurement, Models
Previous Page | Next Page »
Pages: 1  |  2