NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Spence, Ian; Young, Forrest W. – Psychometrika, 1978
Several nonmetric multidimensional scaling random ranking studies are discussed in response to the preceding article (TM 503 490). The choice of a starting configuration is discussed and the use of principal component analysis in obtaining such a configuration is recommended over a randomly chosen one. (JKS)
Descriptors: Correlation, Factor Analysis, Goodness of Fit, Matrices
Peer reviewed Peer reviewed
Isaac, Paul D.; Poor, David D. S. – Psychometrika, 1974
Descriptors: Error Patterns, Factor Analysis, Goodness of Fit, Mathematical Models
Peer reviewed Peer reviewed
Carroll, Robert M. – Educational and Psychological Measurement, 1976
Examines the similarity between the coordinates which resulted when correlations were used as similarity measures and the factor loadings obtained by factor analyzing the same correlation matrix. Real data, a set of error free data, and some computer generated data containing deliberately introduced sampling error are analyzed. (RC)
Descriptors: Comparative Analysis, Correlation, Data Analysis, Factor Analysis
Peer reviewed Peer reviewed
DeSarbo, Wayne S.; Cho, Jaewun – Psychometrika, 1989
This paper presents a new stochastic multidimensional scaling vector threshold model designed to analyze "pick any/n" choice data. A maximum likelihood procedure is formulated to estimate a joint space of both individuals and stimuli. The non-linear probit type model is described, and a Monte Carlo analysis is performed. (TJH)
Descriptors: Consumer Economics, Equations (Mathematics), Factor Analysis, Maximum Likelihood Statistics
Jones, Patricia B.; And Others – 1987
In order to determine the effectiveness of multidimensional scaling (MDS) in recovering the dimensionality of a set of dichotomously-scored items, data were simulated in one, two, and three dimensions for a variety of correlations with the underlying latent trait. Similarity matrices were constructed from these data using three margin-sensitive…
Descriptors: Cluster Analysis, Correlation, Difficulty Level, Error of Measurement