NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 15 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jobst, Lisa J.; Auerswald, Max; Moshagen, Morten – Educational and Psychological Measurement, 2022
Prior studies investigating the effects of non-normality in structural equation modeling typically induced non-normality in the indicator variables. This procedure neglects the factor analytic structure of the data, which is defined as the sum of latent variables and errors, so it is unclear whether previous results hold if the source of…
Descriptors: Goodness of Fit, Structural Equation Models, Error of Measurement, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Jian; Lomax, Richard G. – Journal of Experimental Education, 2017
Using Monte Carlo simulations, this research examined the performance of four missing data methods in SEM under different multivariate distributional conditions. The effects of four independent variables (sample size, missing proportion, distribution shape, and factor loading magnitude) were investigated on six outcome variables: convergence rate,…
Descriptors: Monte Carlo Methods, Structural Equation Models, Evaluation Methods, Measurement Techniques
Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun – Grantee Submission, 2017
The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…
Descriptors: Statistical Analysis, Evaluation Methods, Structural Equation Models, Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Deng, Lifang; Marcoulides, George A.; Yuan, Ke-Hai – Educational and Psychological Measurement, 2015
Certain diversity among team members is beneficial to the growth of an organization. Multiple measures have been proposed to quantify diversity, although little is known about their psychometric properties. This article proposes several methods to evaluate the unidimensionality and reliability of three measures of diversity. To approximate the…
Descriptors: Likert Scales, Psychometrics, Cultural Differences, Measures (Individuals)
Peer reviewed Peer reviewed
Direct linkDirect link
Dülmer, Hermann – Sociological Methods & Research, 2016
The factorial survey is an experimental design consisting of varying situations (vignettes) that have to be judged by respondents. For more complex research questions, it quickly becomes impossible for an individual respondent to judge all vignettes. To overcome this problem, random designs are recommended most of the time, whereas quota designs…
Descriptors: Factor Analysis, Reliability, Validity, Benchmarking
Peer reviewed Peer reviewed
Direct linkDirect link
Köse, Alper – Educational Research and Reviews, 2014
The primary objective of this study was to examine the effect of missing data on goodness of fit statistics in confirmatory factor analysis (CFA). For this aim, four missing data handling methods; listwise deletion, full information maximum likelihood, regression imputation and expectation maximization (EM) imputation were examined in terms of…
Descriptors: Data Analysis, Data Collection, Statistical Analysis, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Junjun; Cowie, Bronwen – Educational Practice and Theory, 2016
This study investigated the responses of 531 preservice teachers to a "Beliefs About Assessment" questionnaire in China. The questionnaire focused on understanding the purposes, practices and principles of assessment for and of learning. Using factor analysis, an inter-correlated two-order model fitted well to the responses. This model…
Descriptors: Preservice Teachers, Student Attitudes, Foreign Countries, Questionnaires
Peer reviewed Peer reviewed
Direct linkDirect link
Zhong, Xiaoling; Yuan, Ke-Hai – Multivariate Behavioral Research, 2011
In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…
Descriptors: Structural Equation Models, Simulation, Racial Identification, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Rhemtulla, Mijke; Brosseau-Liard, Patricia E.; Savalei, Victoria – Psychological Methods, 2012
A simulation study compared the performance of robust normal theory maximum likelihood (ML) and robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent distributions, and 5 patterns of category…
Descriptors: Factor Analysis, Computation, Simulation, Sample Size
Victor Snipes Swaim – ProQuest LLC, 2009
Numerous procedures have been suggested for determining the number of factors to retain in factor analysis. However, previous studies have focused on comparing methods using normal data sets. This study had two phases. The first phase explored the Kaiser method, Scree test, Bartlett's chi-square test, Minimum Average Partial (1976&2000),…
Descriptors: Factor Analysis, Factor Structure, Maximum Likelihood Statistics, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Savalei, Victoria – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Normal theory maximum likelihood (ML) is by far the most popular estimation and testing method used in structural equation modeling (SEM), and it is the default in most SEM programs. Even though this approach assumes multivariate normality of the data, its use can be justified on the grounds that it is fairly robust to the violations of the…
Descriptors: Structural Equation Models, Testing, Factor Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, Holmes; Monahan, Patrick – Applied Measurement in Education, 2008
This article introduces a bootstrap generalization to the Modified Parallel Analysis (MPA) method of test dimensionality assessment using factor analysis. This methodology, based on the use of Marginal Maximum Likelihood nonlinear factor analysis, provides for the calculation of a test statistic based on a parametric bootstrap using the MPA…
Descriptors: Monte Carlo Methods, Factor Analysis, Generalization, Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Lubke, Gitta; Neale, Michael C. – Multivariate Behavioral Research, 2006
Latent variable models exist with continuous, categorical, or both types of latent variables. The role of latent variables is to account for systematic patterns in the observed responses. This article has two goals: (a) to establish whether, based on observed responses, it can be decided that an underlying latent variable is continuous or…
Descriptors: Sample Size, Maximum Likelihood Statistics, Models, Responses
Peer reviewed Peer reviewed
Sorbom, Dag – Psychometrika, 1989
A modification index is presented to aid in reformulating hypothetical models rejected after analysis of empirical data. This index is an improvement over the one in the LISREL V computer program in that it takes into account changes in all parameters of the model when one parameter is freed. (SLD)
Descriptors: Equations (Mathematics), Evaluation Methods, Factor Analysis, Hypothesis Testing
Peer reviewed Peer reviewed
O'Grady, Kevin E.; Medoff, Deborah R. – Multivariate Behavioral Research, 1991
A procedure for evaluating a variety of rater reliability models is presented. A multivariate linear model is used to describe and assess a set of ratings. Parameters are represented in terms of a factor analytic model, and maximum likelihood methods test the model parameters. Illustrative examples are presented. (SLD)
Descriptors: Comparative Analysis, Correlation, Equations (Mathematics), Estimation (Mathematics)