Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 1 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 7 |
Descriptor
Source
Author
| Bautista, Randy | 1 |
| Clarkson, D. B. | 1 |
| Crowe, Kelly S. | 1 |
| Etezadi-Amoli, Jamshid | 1 |
| Finch, Holmes | 1 |
| Hagglund, Gosta | 1 |
| Hamagami, Fumiaki | 1 |
| Hishinuma, Earl S. | 1 |
| Jennrich, R. I. | 1 |
| Jia, Fan | 1 |
| Johnson, Ronald C. | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 11 |
| Reports - Research | 11 |
| Dissertations/Theses -… | 1 |
| Reports - Evaluative | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
Audience
| Researchers | 2 |
Laws, Policies, & Programs
Assessments and Surveys
| Manifest Anxiety Scale | 1 |
| State Trait Anxiety Inventory | 1 |
| Taylor Manifest Anxiety Scale | 1 |
What Works Clearinghouse Rating
Minju Hong – ProQuest LLC, 2022
Reliability indicates the internal consistency of a test. In educational studies, reliability is a key feature for a test. Researchers have proposed many traditional reliability estimates, such as coefficient alpha and coefficient omega. However, traditional reliability indices do not deal with the data hierarchy, even though the multilevel…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Factor Structure, Test Reliability
Köse, Alper – Educational Research and Reviews, 2014
The primary objective of this study was to examine the effect of missing data on goodness of fit statistics in confirmatory factor analysis (CFA). For this aim, four missing data handling methods; listwise deletion, full information maximum likelihood, regression imputation and expectation maximization (EM) imputation were examined in terms of…
Descriptors: Data Analysis, Data Collection, Statistical Analysis, Evaluation Methods
Jia, Fan; Moore, E. Whitney G.; Kinai, Richard; Crowe, Kelly S.; Schoemann, Alexander M.; Little, Todd D. – International Journal of Behavioral Development, 2014
Utilizing planned missing data (PMD) designs (ex. 3-form surveys) enables researchers to ask participants fewer questions during the data collection process. An important question, however, is just how few participants are needed to effectively employ planned missing data designs in research studies. This article explores this question by using…
Descriptors: Data Analysis, Statistical Inference, Error of Measurement, Computation
Pietarinen, Janne; Pyhältö, Kirsi; Soini, Tiina – Curriculum Journal, 2017
The study aims to gain a better understanding of the national large-scale curriculum process in terms of the used implementation strategies, the function of the reform, and the curriculum coherence perceived by the stakeholders accountable in constructing the national core curriculum in Finland. A large body of school reform literature has shown…
Descriptors: Foreign Countries, Educational Change, Curriculum Implementation, Educational Strategies
McArdle, John J.; Hamagami, Fumiaki; Bautista, Randy; Onoye, Jane; Hishinuma, Earl S.; Prescott, Carol A.; Takeshita, Junji; Zonderman, Alan B.; Johnson, Ronald C. – Educational and Psychological Measurement, 2014
In this study, we reanalyzed the classic Hawai'i Family Study of Cognition (HFSC) data using contemporary multilevel modeling techniques. We used the HFSC baseline data ("N" = 6,579) and reexamined the factorial structure of 16 cognitive variables using confirmatory (restricted) measurement models in an explicit sequence. These models…
Descriptors: Factor Analysis, Hierarchical Linear Modeling, Data Analysis, Structural Equation Models
Savalei, Victoria – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Normal theory maximum likelihood (ML) is by far the most popular estimation and testing method used in structural equation modeling (SEM), and it is the default in most SEM programs. Even though this approach assumes multivariate normality of the data, its use can be justified on the grounds that it is fairly robust to the violations of the…
Descriptors: Structural Equation Models, Testing, Factor Analysis, Maximum Likelihood Statistics
Finch, Holmes; Monahan, Patrick – Applied Measurement in Education, 2008
This article introduces a bootstrap generalization to the Modified Parallel Analysis (MPA) method of test dimensionality assessment using factor analysis. This methodology, based on the use of Marginal Maximum Likelihood nonlinear factor analysis, provides for the calculation of a test statistic based on a parametric bootstrap using the MPA…
Descriptors: Monte Carlo Methods, Factor Analysis, Generalization, Methods
Peer reviewedClarkson, D. B.; Jennrich, R. I. – Psychometrika, 1980
A jackknife-like procedure is developed for producing standard errors of estimate in maximum likelihood factor analysis. Unlike earlier methods based on information theory, the procedure developed is computationally feasible on larger problems. Examples are given to demonstrate the feasibility of the method. (Author/JKS)
Descriptors: Algorithms, Data Analysis, Error of Measurement, Factor Analysis
Peer reviewedvan Driel, Otto P. – Psychometrika, 1978
In maximum likelihood factor analysis, there arises a situation whereby improper solutions occur. The causes of those improper solution are discussed and illustrated. (JKS)
Descriptors: Computer Programs, Data Analysis, Factor Analysis, Goodness of Fit
Peer reviewedVelicer, Wayne F.; And Others – Multivariate Behavioral Research, 1982
Factor analysis, image analysis, and principal component analysis are compared with respect to the factor patterns they would produce under various conditions. The general conclusion that is reached is that the three methods produce results that are equivalent. (Author/JKS)
Descriptors: Comparative Analysis, Data Analysis, Factor Analysis, Goodness of Fit
Peer reviewedHagglund, Gosta – Psychometrika, 1982
Three alternative estimation procedures for factor analysis based on the instrumental variables method are presented. Least squares estimation procedures are compared to maximum likelihood procedures. The conclusion, based on the data used in this study, is that two of the procedures seem to work well. (Author/JKS)
Descriptors: Data Analysis, Error of Measurement, Estimation (Mathematics), Factor Analysis
Peer reviewedEtezadi-Amoli, Jamshid; McDonald, Roderick P. – Psychometrika, 1983
Nonlinear common factor models with polynomial regression functions, including interaction terms, are fitted by simultaneously estimating the factor loadings and common factor scores, using maximum likelihood and least squares methods. A Monte Carlo study gives support to a conjecture about the form of the distribution of the likelihood ratio…
Descriptors: Aphasia, Data Analysis, Estimation (Mathematics), Factor Analysis
Mayberry, Paul W. – 1984
A technique for detecting item bias that is responsive to attitudinal measurement considerations is a maximum likelihood factor analysis procedure comparing multivariate factor structures across various subpopulations, often referred to as SIFASP. The SIFASP technique allows for factorial model comparisons in the testing of various hypotheses…
Descriptors: Adults, Analysis of Covariance, Attitude Measures, Data Analysis
Maximum Likelihood Estimation of Factor Structures of Anxiety Measures: A Multiple Group Comparison.
Peer reviewedNewton, Rae R. – Educational and Psychological Measurement, 1984
This paper examines the construct generality of five self-report measures of anxiety across male and female samples, and illustrates the use of confirmatory maximum likelihood techniques for examining factorial invariance. (Author/BW)
Descriptors: Affective Measures, Analysis of Covariance, Anxiety, Data Analysis

Direct link
