Publication Date
| In 2026 | 0 |
| Since 2025 | 10 |
| Since 2022 (last 5 years) | 58 |
| Since 2017 (last 10 years) | 90 |
| Since 2007 (last 20 years) | 157 |
Descriptor
| Bayesian Statistics | 194 |
| Evaluation Methods | 194 |
| Models | 70 |
| Simulation | 40 |
| Comparative Analysis | 36 |
| Computation | 33 |
| Item Response Theory | 30 |
| Hypothesis Testing | 29 |
| Statistical Analysis | 28 |
| Probability | 26 |
| Data Analysis | 24 |
| More ▼ | |
Source
Author
| Chun Wang | 3 |
| Lee, Michael D. | 3 |
| Lee, Sik-Yum | 3 |
| Bejar, Isaac I. | 2 |
| Beretvas, S. Natasha | 2 |
| David Kaplan | 2 |
| Houston, Walter M. | 2 |
| James Ohisei Uanhoro | 2 |
| Jihong Zhang | 2 |
| Jing Lu | 2 |
| Jiwei Zhang | 2 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 7 |
| Administrators | 1 |
| Students | 1 |
| Teachers | 1 |
Location
| Australia | 2 |
| Germany | 2 |
| Italy | 2 |
| Brazil | 1 |
| California | 1 |
| China | 1 |
| Florida | 1 |
| Florida (Miami) | 1 |
| Iceland | 1 |
| Louisiana | 1 |
| Missouri | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 6 |
| Early Childhood Longitudinal… | 3 |
| National Longitudinal Study… | 1 |
| Trends in International… | 1 |
| Wechsler Adult Intelligence… | 1 |
What Works Clearinghouse Rating
Joo, Seang-Hwane; Lee, Philseok – Journal of Educational Measurement, 2022
Abstract This study proposes a new Bayesian differential item functioning (DIF) detection method using posterior predictive model checking (PPMC). Item fit measures including infit, outfit, observed score distribution (OSD), and Q1 were considered as discrepancy statistics for the PPMC DIF methods. The performance of the PPMC DIF method was…
Descriptors: Test Items, Bayesian Statistics, Monte Carlo Methods, Prediction
Van Lissa, Caspar J.; van Erp, Sara; Clapper, Eli-Boaz – Research Synthesis Methods, 2023
When meta-analyzing heterogeneous bodies of literature, meta-regression can be used to account for potentially relevant between-studies differences. A key challenge is that the number of candidate moderators is often high relative to the number of studies. This introduces risks of overfitting, spurious results, and model non-convergence. To…
Descriptors: Bayesian Statistics, Regression (Statistics), Maximum Likelihood Statistics, Meta Analysis
W. Jake Thompson – Grantee Submission, 2024
Diagnostic classification models (DCMs) are psychometric models that can be used to estimate the presence or absence of psychological traits, or proficiency on fine-grained skills. Critical to the use of any psychometric model in practice, including DCMs, is an evaluation of model fit. Traditionally, DCMs have been estimated with maximum…
Descriptors: Bayesian Statistics, Classification, Psychometrics, Goodness of Fit
Bonifay, Wes; Depaoli, Sarah – Prevention Science, 2023
Statistical analysis of categorical data often relies on multiway contingency tables; yet, as the number of categories and/or variables increases, the number of table cells with few (or zero) observations also increases. Unfortunately, sparse contingency tables invalidate the use of standard goodness-of-fit statistics. Limited-information fit…
Descriptors: Bayesian Statistics, Programming Languages, Psychopathology, Classification
Regional Educational Laboratory Mid-Atlantic, 2024
These are the appendixes for the report, "Stabilizing School Performance Indicators in New Jersey to Reduce the Effect of Random Error." This study applied a stabilization model called Bayesian hierarchical modeling to group-level data (with groups assigned according to demographic designations) within schools in New Jersey with the aim…
Descriptors: Institutional Evaluation, Elementary Secondary Education, Bayesian Statistics, Test Reliability
MOOC Performance Prediction and Analysis via Bayesian Network and Maslow's Hierarchical Needs Theory
Luyu Zhu; Jia Hao; Jianhou Gan – Interactive Learning Environments, 2024
Nowadays, Massive Open Online Courses (MOOC) has been gradually accepted by the public as a new type of education and teaching method. However, due to the lack of timely intervention and guidance from educators, learners' performance is not as effective as it could be. To address this problem, predicting MOOC learners' performance and providing…
Descriptors: MOOCs, Academic Achievement, Prediction, Bayesian Statistics
John Deke; Mariel Finucane; Dan Thal – Society for Research on Educational Effectiveness, 2022
Background/Context: Methodological background: Meta-analysis typically depends on the assumption that true effects follow the normal distribution. While assuming normality of effect "estimates" is often supported by a central limit theorem, normality for the distribution of interventions' "true" effects is a computational…
Descriptors: Bayesian Statistics, Meta Analysis, Regression (Statistics), Research Design
Paul Tschisgale; Marcus Kubsch; Peter Wulff; Stefan Petersen; Knut Neumann – Physical Review Physics Education Research, 2025
Problem solving is considered an essential ability for becoming an expert in physics, and individualized feedback on the structure of problem-solving processes is a key component to support students in developing this ability. Problem-solving processes consist of multiple elements whose order forms the sequential structure of these processes.…
Descriptors: Problem Solving, Physics, Science Instruction, Teaching Methods
Shengyu Jiang; Jiaying Xiao; Chun Wang – Grantee Submission, 2022
An online learning system has the capacity to offer customized content that caters to individual learner's need and has seen growing interest from industry and academia alike in recent years. Different from traditional computerized adaptive testing setting which has a well-calibrated item bank with new items periodically added, online learning…
Descriptors: Item Response Theory, Item Banks, Bayesian Statistics, Learning Management Systems
Kaplan, David; Chen, Jianshen; Lyu, Weicong; Yavuz, Sinan – Large-scale Assessments in Education, 2023
The purpose of this paper is to extend and evaluate methods of "Bayesian historical borrowing" applied to longitudinal data with a focus on parameter recovery and predictive performance. Bayesian historical borrowing allows researchers to utilize information from previous data sources and to adjust the extent of borrowing based on the…
Descriptors: Bayesian Statistics, Longitudinal Studies, Children, Surveys
David Kaplan; Jianshen Chen; Weicong Lyu; Sinan Yavuz – Grantee Submission, 2023
The purpose of this paper is to extend and evaluate methods of "Bayesian historical borrowing" applied to longitudinal data with a focus on parameter recovery and predictive performance. Bayesian historical borrowing allows researchers to utilize information from previous data sources and to adjust the extent of borrowing based on the…
Descriptors: Bayesian Statistics, Longitudinal Studies, Children, Surveys
Peer reviewedDongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Du, Han; Enders, Craig; Keller, Brian; Bradbury, Thomas N.; Karney, Benjamin R. – Grantee Submission, 2022
Missing data are exceedingly common across a variety of disciplines, such as educational, social, and behavioral science areas. Missing not at random (MNAR) mechanism where missingness is related to unobserved data is widespread in real data and has detrimental consequence. However, the existing MNAR-based methods have potential problems such as…
Descriptors: Bayesian Statistics, Data Analysis, Computer Simulation, Sample Size
Bayesian Adaptive Lasso for the Detection of Differential Item Functioning in Graded Response Models
Na Shan; Ping-Feng Xu – Journal of Educational and Behavioral Statistics, 2025
The detection of differential item functioning (DIF) is important in psychological and behavioral sciences. Standard DIF detection methods perform an item-by-item test iteratively, often assuming that all items except the one under investigation are DIF-free. This article proposes a Bayesian adaptive Lasso method to detect DIF in graded response…
Descriptors: Bayesian Statistics, Item Response Theory, Adolescents, Longitudinal Studies
Shi, Dingjing; Tong, Xin – Sociological Methods & Research, 2022
This study proposes a two-stage causal modeling with instrumental variables to mitigate selection bias, provide correct standard error estimates, and address nonnormal and missing data issues simultaneously. Bayesian methods are used for model estimation. Robust methods with Student's "t" distributions are used to account for nonnormal…
Descriptors: Bayesian Statistics, Monte Carlo Methods, Computer Software, Causal Models

Direct link
